
ABSTRACT

SIVARAMAN, VIJAY. TDM Schedules for Broadcast WDM Networks with Ar-
bitrary Transceiver Tuning Latencies. (Under the direction of Professor George
Rouskas.)

We consider the problem of scheduling packet transmissions in a broadcast, single-

hop WDM network. Tunability is provided only at one end, namely, at the trans-

mitters. Our objective is to design schedules of minimum length to satisfy a set

of tra�c requirements given in the form of a demand matrix. We address a fairly

general version of the problem as we allow arbitrary tra�c demands and arbitrary

transmitter tuning latencies. The contribution of our work is twofold. First we de�ne

a special class of schedules which permit an intuitive formulation of the scheduling

problem. Based on this formulation we present algorithms which construct schedules

of length equal to the lower bound provided that the tra�c requirements satisfy cer-

tain optimality conditions. We also develop heuristics which, in the general case, give

schedules of length equal to or very close to the lower bound. Secondly, we identify

two distinct regions of network operation. The �rst region is such that the schedule

length is determined by the tuning requirements of transmitters; when the network

operates within the second region however, the length of the schedule is determined

by the tra�c demands, not the tuning latency. The point at which the network

switches between the two regions is identi�ed in terms of system parameters such as

the number of nodes and channels, and the tuning latency. Accordingly, we show

that it is possible to appropriately dimension the network to o�set the e�ects of even

large values of the tuning latency.
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Chapter 1

Introduction

1.1 Optical Networks

Recent advances in lightwave technology have led to the design of third generation

all-optical networks that exploit the unique properties of single-mode �ber, especially

its enormous information carrying capacity. However, in order to e�ectively tap

into the huge bandwidth of the optical medium, measured in the order of tens of

THz over the low-loss windows at 1:3�m and 1:5�m, the network architecture must

overcome the so-called electro-optic bottleneck [13]. Today's electronics typically

operate at rates of a few Gigabits per second, and can drastically limit the throughput

available to the network users, unless the network architecture supports some form

of concurrency.

Wave Division Multiplexing (WDM) divides the wavelength spectrum of the �ber

into a number of independent, non-overlapping channels operating at a data rate

accessible by the attached stations. Thus, WDM architectures have the ability to

support multiple simultaneous communication paths over a single �ber, each on a

di�erent wavelength. As a result, WDM networks can deliver an aggregate throughput

that grows with the number of wavelengths deployed, and can be in the order of

Terabits per second.
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Figure 1.1: A Single-hop WDM Lightwave Network

1.2 Single Hop Networks

Our focus in this thesis is on a WDM network architecture known as the single-hop

architecture [16]. It consists of N stations interconnected over a passive broadcast

optical medium that can support C wavelengths �1; : : : ; �C , as in Figure 1.1.

In general, C � N . Each station taps into the optical medium through an electro-

optic interface consisting of one transmitter and one receiver. Each wavelength can be

considered as a channel operating at data rates accessible by the electronic interfaces

at each station. Since transmissions on di�erent wavelengths do not interfere with

each other, the multiplexing of several channels provides the concurrency necessary

to exploit the vast bandwidth of the optical medium.

The network operates in a broadcast-and-select mode; packets transmitted on

wavelength �c, c = 1 : : : C are broadcast over the medium, but are only received by

stations with a receiver listening on wavelength �c. This can be achieved by using a

passive broadcast physical topology, such as a star, a unidirectional bus, or a tree. If

necessary, optical ampli�ers may be deployed to maintain adequate signal levels.
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1.3 Fixed and Tunable Transceivers

Single-hop networks are all-optical in nature. In other words, they provide com-

plete optical paths between any source-destination pair, and no conversion between

electronics and photonics takes place within the network. For a successful packet

transmission, the transmitter of the source and the receiver of the destination must

operate on the same wavelength. Thus, tunable transmitters and/or receivers are re-

quired to provide full connectivity among the stations. A �xed transmitter is a laser

that can only transmit on a certain wavelength. A tunable transmitter is one that

can tune to, and transmit on several wavelengths, one at a time. Fixed and tunable

receivers are distinguished in a similar way. Depending on the transceiver tunability

characteristics, a single-hop network is classi�ed as one with tunable transmitters and

�xed receivers (TT-FR), or with �xed transmitters and tunable receivers (FT-TR),

or with tunable transmitters and tunable receivers (TT-TR).

Tunable transceivers (lasers and/or optical �lters) with the ability to tune fast

across all available channels are crucial to the design of single-hop networks. Such de-

vices do exist today; however, their capabilities are limited in terms of both tunability

range and speed. Work in improving the performance characteristics of tunable de-

vices proceeds at a fast pace; but the ideal device, one that can tune across the useful

optical spectrum in sub-microsecond times [12] remains elusive, and, barring a tech-

nological breakthrough, will remain so at least for the foreseeable future. We show,

however, that careful network design can mask the e�ects of non-ideal devices, mak-

ing it possible to build single-hop WDM networks using currently available tunable

optical transceivers.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 contains some background, including

discussion of related work on scheduling packet transmissions in WDM/TDM single-

hop networks with tuning latency. In Chapter 3 we describe our system and tra�c

model, and formally introduce the concept of a schedule. In Chapter 4 we formulate
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the problem of �nding schedules of minimum length, and show that it isNP-complete;

we also derive lower bounds on the schedule length, and discuss the e�ect of the

dominant bound on the network operation. We introduce a special class of schedules

in Chapter 5, and proceed to develop scheduling algorithms which, under certain

conditions, construct optimal schedules within this class. Scheduling heuristics are

developed in Chapter 6, and in Chapter 7 we present some numerical results. We

then summarize our work, and point out directions for future research in Chapter 8.
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Chapter 2

Background and Related Work

In the recent past, signi�cant e�ort has been devoted to the design and study of

protocols for single-hop WDM networks. In general, the various design approaches

take one of two directions, depending on their assumptions regarding the relative val-

ues of packet transmission time and transceiver tuning times. In order to characterize

these approaches, let � denote the normalized tuning latency, expressed in units of

packet transmission time. The value of � depends on the data rate, the packet size,

and the transceiver tuning time, and can be less than, equal to, or greater than one.

Underlying the design of a broad class of architectures is the assumption that

� � 1, i.e., that transceiver tuning times are negligible compared to the duration of a

packet transmission. This assumption is reasonable for communication environments

with data rates in the order of a few hundreds Megabits per second, and relatively

large packet sizes. For instance, with a 155 Megabits per second rate, 6000 bit packets,

and 1 �s tuning time, the normalized tuning latency � � 0:026 � 1. Accordingly, a

padding equal to � time units can be included within each slot to allow the transceivers

su�cient time to switch between wavelengths, with minimal e�ects on the overall

performance. This is reected in the design of network architectures and protocols

for such environments [18, 19, 3, 5, 6, 14] which has been geared towards improving the

delay and throughput characteristics of the network under various tra�c assumptions,

completely ignoring transceiver tuning times.

With the current trend, however, being towards ever increasing data rates (Giga-
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bits per second and beyond) and diminishing packet sizes (e.g., 53-byte ATM cells),

emerging communication environments are such that the tuning times of even the

fastest available tunable optical devices dominate over packet transmission times,

making � comparable to, and even greater than, 1. Including a padding equal to �

within each slot would be highly ine�cient in this case; instead, it is highly desirable

to have the slot time equal to the packet transmission time alone. Let us now de�ne

� as

� = d�e (2.1)

Observe that, in a slotted system with a slot time equal to the packet transmission

time, a transceiver instructed to switch to a new channel will be unavailable for a

number of slots equal to �. We will use the term tuning slots in future references to

parameter �.

Let � � 1 be the number of tuning slots of the system under consideration.

A straightforward approach to make the tuning latency transparent to higher level

protocols, would be to equip each node with � + 1 transceivers. A node would then

use transceiver t; t = 0; : : : ;�, in slots t + m(� + 1); m = 0; 1; 2; : : :, only. This

con�guration would, in e�ect, appear to higher level protocols as a single transceiver

that can tune in�nitely fast between channels. Its obvious disadvantages, however,

including the cost of hardware and the complexity of managing and coordinating

packet transmissions/receptions from multiple transceivers, especially as � > 1, make

this an unattractive solution. A design similar in concept, but oriented towards circuit

switched tra�c, can be found in [15].

If no extra hardware is used, minimizing the e�ects of transceiver tuning times

on network performance is possible only through specially designed protocols. In [8],

for instance, the TDMA scheme considered is such that the frame is divided into

transmitting and tuning periods. Each transceiver operates on a �xed channel during

a transmitting period; no transmissions take place during the tuning periods, which

are reserved to retune transceivers to be ready for the next transmitting period. The

objective is to minimize the number of tuning periods within the frame. The MaTPi

protocol [20], on the other hand, is a reservation based protocol that can be used by
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stations to reserve, in real time, a time slot that is � slots in the future.

Another design approach, which we pursue in this work, is based on the observa-

tion that, when the number of stations, N , in the network is greater than the number

of available wavelengths, C, at most C stations may be transmitting at any given

slot. The remaining stations may use that slot for retuning to a new channel, so that

they will be ready to access that channel at a later slot. Thus, transceiver tuning

times may (at least partially) be overlapped with transmissions by other stations,

keeping channel utilization at high levels. The objective, then, is to design schedules

of minimum length, given a tra�c demand matrix. In [17, 1] uniform tra�c demands

are considered, and lower and upper bounds on the length of an optimal schedule are

derived. The work in [2] considers a tra�c demand matrix of 1's and 0's (representing

the existence or not, respectively, of a head-of-line packet at the various queues), and

values of � � 1. The main contribution of [2] was to identify, in terms of system

parameters N , C, and � � 1, a region of operation for the network such that the

ine�ciency due to the tuning latency can be completely eliminated through a sim-

ple scheduling algorithm. Our work is more general, as it considers arbitrary tra�c

demands and arbitrary values of �; furthermore, we develop scheduling algorithms

which guarantee that, within certain regions of operation, the tuning latency has no

e�ect on network performance, thus extending the results of [2] to values of � > 1.

The problem of scheduling non-uniform tra�c under arbitrary tuning latencies

has been previously studied in [4], where a scheduling heuristic was presented and

shown to produce good results. There are signi�cant di�erences between the work in

[4] and ours, however. In contrast to [4] where one heuristic is used throughout, we

make the fundamental observation that, depending on the tra�c matrix and system

parameters N , C, and �, the network can be operating in one of two distinct regions.

We then develop two scheduling algorithms, one for each region, which we prove to be

optimal under certain conditions; further, we demonstrate that an algorithm optimal

for one region performs sub-optimally when applied to a network operating in the

other region. We also present heuristics (again one for each region) that are quite

di�erent from the one in [4], and which are based on the intuition provided by an

appropriate formulation of the scheduling problem.
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The next chapter discusses the system and tra�c model, and de�nes formally the

notion of a transmission schedule. It lays the groundwork for a formal de�nition of

the scheduling problem, and de�nes various terms which will be used throughout the

thesis.
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Chapter 3

System Model

We consider packet transmissions in an all-optical, single-hop WDM network with

a passive star physical topology. Each of the N nodes in the network employs one

transmitter and one receiver. The passive star supports C wavelengths, or channels 1,

�1; : : : ; �C . In general, C � N . Without loss of generality, we only consider tunable-

transmitter, �xed-receiver (TT-FR) networks; all of our results can be easily adapted

to �xed-transmitter, tunable-receiver systems.

Each tunable transmitter can be tuned to, and transmit on, any and all wave-

lengths �c; c = 1; : : : ; C. The �xed receiver at station j, on the other hand, is as-

signed wavelength �(j) 2 f�1; : : : ; �Cg. If the number of channels, C, is equal to

the number of nodes, N , then each receiver is assigned a unique wavelength. When

C < N , however, a single wavelength may be assigned to a number of receivers. We

de�ne Rc as the set of receivers sharing wavelength �c:

Rc = fj j �(j) = �cg; c = 1; : : : ; C (3.1)

Under the packet transmission scenario we are considering, there is an N � N

tra�c demand matrix D = [dij], with dij representing the number of slots to be

allocated for transmissions from source i to destination j. Since a transmission on

wavelength �c is heard by all receivers listening on �c, given a partition of the receiver

set into sets Rc, we obtain the collapsed N � C tra�c matrix A = [aic]. Element aic

1The terms \wavelength" and \channel" will be used interchangeably throughout this thesis.
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of the collapsed matrix represents the number of slots to be assigned to source i for

transmissions on channel �c:

aic =
X
j2Rc

dij; i = 1; : : : ; N; c = 1; : : : ; C (3.2)

Without loss of generality, we assume that aic > 0 8 i; c, that is, each source i has to

be allocated at least one slot on each channel 2. We also let D denote the total tra�c

demand, across all source-destination pairs:

D =
NX
i=1

NX
j=1

dij =
NX
i=1

CX
c=1

aic (3.3)

There are several situations in which such a transmission scenario arises. For

instance, under a gated service discipline, quantity dij may represent the number

of packets with destination j in the queue of station i at the moment the \gate" is

closed. Alternatively, it may represent the number of slots to be allocated to the (i; j)

source-destination pair to meet certain quality of service (QOS) criteria; in the latter

case dij may not directly depend on actual queue lengths, but may be derived based

on assumptions regarding the arrival process at the source. The exact nature of dij

is not important in this work and does not a�ect our conclusions, therefore, it will be

left unspeci�ed.

Finally, observe that, while the tra�c matrix,D, is given, the collapsed matrix,A,

is not uniquely speci�ed, but depends on the assignment of receivers to wavelengths.

For the moment, we will assume that the receiver sets Rc are known; how to construct

these sets will be discussed in the next chapter.

3.1 Transmission Schedules

In the WDM environment we are considering, a simultaneous transmission by two

or more stations on the same channel results in a collision. To avoid packet loss

due to collisions, some form of coordination among transmitting sources is necessary

2This assumption is reasonable, especially when the number of nodes, N , is signi�cantly greater
than the number of available channels (a likely scenario in WDM environments), as each channel
will be shared by many receivers.
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[12]. A transmission schedule is an assignment of slots to source-channel pairs that

provides this coordination: if slot � is assigned to pair (i; �c), then in slot � , source i

may transmit a packet to any of the receivers listening on wavelength �c. Exactly aic

slots must be assigned to the source-channel pair (i; �c), as speci�ed by the collapsed

matrixA. However, this assignment is complicated by the fact that transmitters need

time to tune from one wavelength to another.

If the aic slots are contiguously allocated for all pairs (i; �c), the schedule is said to

be non-preemptive; otherwise we have a preemptive schedule. Under a non-preemptive

schedule, each transmitter will tune to each channel exactly once, minimizing the

overall time spent for tuning. Since our objective is to assign slots so as to minimize

the time needed to satisfy the tra�c demands speci�ed by the collapsed tra�c matrix,

A, we only consider non-preemptive schedules.

Formally, a non-preemptive schedule is de�ned as a set S = f�icg, with �ic the

�rst of a block of aic contiguous slots assigned to the source-channel pair (i; �c). Since

each source has exactly one laser which needs � slots to tune between channels, all

time intervals [�ic� 1; �ic+ aic +�� 1) must be disjoint 3, yielding a set of hardware

constraints on schedule S:

[�ic�1; �ic+aic+��1)
\

[�ic0�1; �ic0 + aic0 + ��1) = � 8 c 6= c0; i = 1; : : : ; N

(3.4)

In addition, to avoid collisions, at most one transmitter should be allowed to transmit

on a given channel in any given slot, resulting in a set of no-collision constraints:

[�ic�1; �ic+aic�1)
\

[�i0c�1; �i0c+ai0c�1) = � 8 i 6= i0; c = 1; : : : ; C (3.5)

A non-preemptive schedule S is admissible if and only if S satis�es both the hardware

and the no-collision constraints.

Consider now transmitter i and an admissible schedule S = f�icg. Based on the

above discussion, transmitter i can be in one of three states during a slot � .

1. Transmitting state, if, according to the schedule, i is assigned to transmit on

some channel �c. Transmitter i is in the transmitting state in slots �ic through

3We make the assumption that slot � starts at time ��1 and occupies the time interval [��1; �).
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�ic + aic � 1, c = 1; : : : ; C.

2. Tuning state. Immediately after completing its transmission on channel �c, i

instructs its laser to tune to the next channel, say, channel �c0, and will be in

the tuning state for exactly � slots.

3. Idle state. The laser at station i will be ready to transmit on channel �c0 at

the beginning of slot � = �ic + aic +�. If, however, �ic0 > � , i will simply wait

for slot �ic0 before it starts transmitting on channel �c0. We say that i is idle in

these �ic0 � � slots.

Similarly, we say that channel �c is busy in slot � if some station has been assigned

to transmit on �c in that slot (because of the no-collision constraint, there will be

exactly one such station), and idle, otherwise. Channel idling results in wasted band-

width; one of the contributions of this work is to show that it is possible to properly

dimension the network to minimize channel idling.

The length, M , of a schedule S for the collapsed tra�c matrix A is the number of

slots required to satisfy all tra�c demands aic under S. An optimum length schedule

for A is one with the least length among all schedules. Note that an optimum length

schedule does not preclude the existence of slots with idle channels (see also Figure

3.1), but a schedule in which no channel is ever idle is necessarily an optimum length

schedule.

Figure 3.1 shows an optimum length non-preemptive schedule for a network with

N = 5 nodes, C = 3 channels, and � = 2; the collapsed tra�c matrixA can be easily

deduced from the �gure. Observe that all hardware and no-collision constraints are

satis�ed. In particular, the �rst slot assigned to station 3 on channel �2 is slot 13,

rather than slot 12, as its laser needs two slots to tune from �1 to �2. Also, the fact

that channel �2 is idle in slots 12 and 18, and channel �1 is idle in slot 18, does not

a�ect the overall length of the schedule.

In the following, we make the assumption that the schedule repeats over time;

in other words, if �ic is the start slot of transmitter i on channel �c under schedule

S of length M , then so are slots �ic + kM; k = 1; 2; 3; : : : ; where k denotes the k-th
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Figure 3.1: An optimum length schedule for a network with N = 5, C = 3, and
� = 2.

identical copy of the schedule as it repeats in time. If the tra�c parameters dij are

derived based on the behavior and required quality of service of longer term (relative

to a packet transmission time) connections between the various source-destination

pairs, we expect the schedule to repeat until a change in tra�c demands triggers an

update of the demand matrix. Under the gated service discipline scenario discussed

above, however, a new schedule has to be computed after all transmissions under the

current schedule have been completed. We now argue that the schedules we derive

are applicable even under the latter scenario.

If the schedule is used only once, then a period of � tuning slots is necessary

to allow transmitters to tune to their initial channels; no transmissions are possible

during this tuning period. On the other hand, if the schedule repeats over time,

this tuning period can be overlapped with transmissions in the previous frame of the

schedule, possibly resulting in a smaller overall schedule length 4. In any case, the

length of a schedule derived under the assumption that transmissions repeat over

time will be at most � slots smaller than if this assumption is not made. We can

then use the schedules derived here in situations where a schedule is used only once,

after adding an initial period of � slots. Furthermore, even though our assumption

does a�ect the schedule length somewhat, it does not a�ect our conclusions about

the network's regions of operation, to be discussed shortly.

4Actually, a tuning period of � slots is still needed the very �rst time the schedule is used, but
it can be ignored, especially if the schedule repeats for a relatively large number of times.
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Unless otherwise speci�ed, from now on the term \schedule" will be used as an

abbreviation for \admissible non-preemptive schedule".

Now that the notion of a schedule has been formalised, the next chapter goes on

to de�ne formally the scheduling problem, and to prove that it is NP-complete. It

also derives lower bounds for the schedule length, and identi�es two distinct regions

of network operation based on which of these lower bounds is dominant.
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Chapter 4

Schedule Optimization and Lower

Bounds

The length,M , of a schedule for a tra�c matrixD, is a measure of both the packet

delay incurred while transmitting D, and the system-wide throughput (the average

number of packets transmitted per slot, D
M
). Our objective then, is to determine

an optimum length schedule to transmit the demand matrix D, as such a schedule

would both minimize the delay and maximize throughput. This problem, which we

will call the Packet Scheduling with Tuning Latencies (PSTL) problem, can be stated

concisely as:

Problem 4.1 (PSTL) Given the number of nodes, N , the number of available wave-

lengths, C, the tra�c demand matrix, D = [dij], and the tuning slots, �, �nd a

schedule of minimum length for matrix D.

Problem PSTL can be logically decomposed into two subproblems:

� the sets of receivers, Rc, sharing wavelength �c; c = 1; : : : ; C, must be obtained,

and from them the collapsed tra�c matrix, A= [aic], constructed, and

� for all i and c, a way of placing the aic slots to minimize the length of the

schedule must be determined.
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Let us now turn our attention to the second subproblem; for reasons that will be-

come apparent shortly, we will refer to this as the Open-Shop Scheduling with Tuning

Latencies (OSTL) problem. It can be expressed formally as a decision problem:

Problem 4.2 (OSTL) Given the number of nodes, N , the number of available wave-

lengths, C, the collapsed tra�c demand matrix, A = [aic], the tuning slots, � � 0,

and an overall deadline, M > 0, is there a schedule S = f�icg that meets the deadline,

in other words, is there a schedule of length at most M , satisfying constraints (3.4)

and (3.5)?

As stated, OSTL is a generalization of the non-preemptive open-shop scheduling

(OS) problem studied in [11] 1; it reduces to the latter when we let � = 0. It was

shown in [11] that problem OS is NP-complete when the number of wavelengths is

C � 3. But for C = 2, problem OS admits a polynomial-time solution, and algorithm

OPEN SHOP was developed in [11] that constructs an optimum length OS schedule

in time linear in the number of nodes, N .

Drawing upon the results of [11], we now prove the following theorem, which

con�rms our intuition that OSTL is in a sense more di�cult than OS. Furthermore,

it implies that a polynomial-time algorithm for OSTL, and consequently for PSTL,

is unlikely to be found.

Theorem 4.1 OSTL is NP-complete for any �xed C � 2.

Proof. See Appendix A. 2

We now derive lower bounds for problems PSTL and OSTL, and discuss their

implications.

4.1 Lower Bounds for PSTL and OSTL

First, observe that the length of any schedule cannot be smaller than the number of

slots required to satisfy all transmissions on any given channel, yielding the bandwidth

1In the terminology of [11], C is the number of processors and N is the number of jobs. Each
job consists of C tasks; the c-th task, c = 1; : : : ; C, of job i requires aic processing time, and is to
be processed by processor c.
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bound:

M
(l)
bw = max

1�c�C

(
NX
i=1

aic

)
�

D

C
(4.1)

Note that the term in the brackets depends on the assignment of receive wavelengths

to the nodes (i.e., the sets Rc); the rightmost term, however, depends only on the

total tra�c demand, D, and is a lower bound on PSTL independently of the actual

elements dij of the demand matrixD. Expression (4.1) implies that, given the number

of wavelengths (which determines the amount of bandwidth available), the bandwidth

bound is minimized when the tra�c load is perfectly balanced across the C channels.

We can obtain a di�erent lower bound by adopting a transmitter's point of view.

Each transmitter i needs a number of slots equal to the number of packets it has to

transmit plus the number of slots required to tune to each of C wavelengths 2. We

call this the tuning bound:

M
(l)
t = max

1�i�N

(
CX
c=1

aic

)
+ C � = max

1�i�N

8<
:

NX
j=1

dij

9=
; + C � �

D

N
+ C � (4.2)

The tuning bound is independent of the assignment of receive wavelengths to the

nodes, and only depends on the system parameters N , C, and �, and the total tra�c

demand D; it is minimized when each source contributes equally to the total tra�c

demand. We now obtain the overall lower bound as

M (l) = max
n
M

(l)
bw ;M

(l)
t

o
(4.3)

This overall bound is minimized when

D

C
=

D

N
+ C � ,

D

C
=

N C �

N � C
(4.4)

It is interesting to note that the quantity NC�
N�C

is independent of the demand

matrix, and as such it characterizes the network under consideration. We will call

this quantity the critical length. Now, the relationship (4.4) between the minimum

bandwidth bound, D
C
, and the critical length is a fundamental one, and represents

the point at which wavelength concurrency balances the tuning latency. Indeed, if

2Recall that we have assumed that aic > 0 for all i and c.
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a schedule has length equal to the critical length, because of (4.4) it is such that

exactly C (respectively, N � C) nodes are in the transmitting (respectively, tuning)

state within each slot. Consequently, all NC� tuning slots are overlapped with

packet transmissions, and vice versa. Such a schedule is highly desirable, as it has

three important properties: (a) it completely masks the tuning latency, (b) it is the

shortest schedule for transmitting a total demand of D packets, and (c) it achieves

100% utilization of the available bandwidth, as no channel is ever idle.

The signi�cance of the actual schedule length relative to the critical length is

explored in the following section.

4.2 Bandwidth Limited vs. Tuning Limited Net-

works

To get further insight on (4.4), let us consider the case of uniform tra�c, whereby

each source has � � 1 packets for each possible destination:

dij = � � 1 8 i; j ) D = �N2 (integer �) (4.5)

This is a generalization of the all-to-all schedules studied in [17, 2], where the value

of � was taken equal to 1. Substituting this value of D into (4.4) we get

� N2

C
= � N + C � ,

� N2

C
=

N C �

N � C
(4.6)

In [17, 2] the quadratic equation (4.6) was solved (with � = 1) to obtain the value of

C that minimizes the lower bound for all-to-all schedules. Typically, however, C, N ,

and � are given parameters; one could then solve (4.6) to obtain an optimal value

for �, which we will denote with �?; in general, �? may not be an integer.

�? =
C2

N(N � C)
� (4.7)

Suppose now that we choose � < �? in (4.5); for simplicity, also let N = kC, so

that the tra�c demand can be perfectly balanced across the channels. In this case,

the tuning bound �N + C� becomes greater than the bandwidth bound �N2

C
, and
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the length of the schedule is determined by the transmitter tuning requirements 3.

Since the total tra�c demand is �N2 and � < �?, the throughput achievable under

such a schedule is
�N2

�N + C�
< C (4.8)

As we can see, the larger the value of � the higher the throughput; once the value

of � has increased beyond �?, the bandwidth bound becomes dominant and the

throughput becomes equal to its maximum value, C.

Increasing the value of �, however, has the e�ect of increasing the length of the

schedule, either through the tuning bound �N+C�, or through the bandwidth bound
�N2

C
. But this length is a measure of packet delay, and cannot be increased beyond a

certain level perceived as acceptable by the various higher layer applications. Within

the family of matrices described in (4.5) therefore, the demand matrix corresponding

to the value � = d�?e achieves a perfect balance between delay and throughput, as it

provides for the smallest schedule length that results in a 100% channel utilization.

One might have to settle for less than 100% utilization, however, if satisfying the delay

requirements would mean choosing � < d�?e. It is in these situations that advances

in optical device technology would really make a di�erence 4. From (4.7) we see that

the value of �?, and consequently, the value of the critical length, is proportional to �.

Employing faster tunable transceivers would then bring �? closer to the acceptable

(in terms of delay) operating value of �, and improve the throughput (see also (4.8)).

Alternatively, according to (4.7), the same e�ect could be achieved by employing

fewer wavelengths, a larger number of nodes, or a combination of the two.

The above observations are of general nature, applying to non-uniform demand

matrices as well. In general, we will say that a network is

� tuning limited, if the tuning bound dominates, i.e., M (l) = M
(l)
t > M

(l)
bw , or

3As we shall see in the following chapter, when C is a divisor of N , it is always possible to
construct an optimal schedule (in this case, a schedule of length equal to the tuning bound) for
uniform tra�c demands.

4In contrast, the conclusion in [2] was that further advances in device technology would have
negligible impact. This conclusion however, was due to the fact that only the case � = 1 was
considered there.



20

� bandwidth limited, if the bandwidth bound is dominant; then, M (l) = M
(l)
bw >

M
(l)
t .

To see why this distinction is important, note that any near-optimal scheduling algo-

rithm, including the ones to be presented shortly, will construct schedules of length

very close to the lower bound. If the network is tuning limited, the length of the

schedule is determined by the tuning bound in (4.2), which in turn is directly a�ected

by the tuning latency. The schedule length of a bandwidth limited network, on the

other hand, depends only on the tra�c requirements of the dominant channel, i.e.,

the channel �c such that
PN

i=1 aic =M
(l)
bw .

Based on this discussion, it is desirable to operate the network at the bandwidth

limited region, as doing so would eliminate the e�ects of tuning latency. For uniform

tra�c we saw that this can be accomplished by selecting � = d�?e. But the e�ect of

choosing such a value for � is to make the bandwidth bound greater than the critical

length in (4.6). In the general case (non-uniform tra�c matrix D) we would like to

make the bandwidth bound in (4.4) greater than the critical length:

D

C
>

NC�

N � C
(4.9)

Given a value for �, and some information about the delay requirements of higher

layer applications, expression (4.9) may be satis�ed by carefully dimensioning the

network (i.e., initially choosing appropriate values for N and C) so that it operates in

the bandwidth limited region. Since, however, delay constraints and/or constraints

on the values of N and C may make it impossible to satisfy (4.9) for a given system,

in the following we develop scheduling algorithms and heuristics for both regions of

network operation.

Let us now suppose that expression (4.9) is satis�ed, i.e., that the network oper-

ates in the bandwidth limited region with the bandwidth bound M
(l)
bw the dominant

one. Recall that M (l) represents the total slot requirements for some channel, hence,

under the non-uniform tra�c scenario we are considering, it is possible for M (l) to be

signi�cantly greater than D
C
. Since, assuming that a near-optimal algorithm is avail-

able, the length of the �nal schedule will depend on M (l), it is extremely important
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that the receiver sets Rc be constructed so that the o�ered tra�c is well balanced

across all channels 5. This load balancing problem [7] is a well-known and widely-

studied NP-complete problem (refer also to the PARTITION problem in Appendix

A), and several heuristics (such as the one in [9] which guarantees a performance

of at most 1.22 times away from the optimal) as well as polynomial approximation

algorithms have been derived for it. As such, we will not consider this problem any

further, but we will once more emphasize the importance of using some approxima-

tion scheme to e�ectively balance the tra�c across the channels, in addition to the

heuristics presented here for the OSTL problem.

Now that we have identi�ed the two operating regions of the network, we go on

to de�ne a special class of schedules in the next chapter. We derive algorithms (one

for each of the two regions) which under certain conditions give optimal schedules

within this class. We also show that optimal schedules are very di�cult to obtain at

the boundary between the bandwidth limited and the tuning limited region.

5Recall that constructing the sets Rc was the �rst of two subproblems into which problem PSTL

was decomposed; the second being, of course, problem OSTL.
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Chapter 5

A Class of Schedules for OSTL

Let A be a collapsed tra�c matrix, and S a schedule of length M satisfying

the hardware and no-collision constraints (3.4) and (3.5), respectively. Consider now

the order in which the various transmitters are assigned slots within, say, channel

�1, starting with some transmitter �1. We will say that s1 = (�1; �2; : : : ; �N) is the

transmitter sequence on channel �1 if �2 is the �rst node after �1 to transmit on

�1, �3 is the second such node, and so on. Since we have assumed that schedule S

repeats over time, after node �N has transmitted its packets on �1, the sequence of

transmissions implied by s1 above starts anew 1. Similarly, we will say that v1 =

(��1; ��2; : : : ; ��C) is the channel sequence for node 1, if this is the order in which

node 1 is assigned to transmit on the various channels, starting with channel ��1.

Given S, the transmitter sequences with �1 as the �rst node, are completely

speci�ed for all channels �c. In general, these sequences can be di�erent for the

various channels. However, in what follows we concentrate on a class of schedules

such that the transmitter sequences (with �1 as the �rst node) are the same for all

channels:

sc = (�1; �2; : : : ; �N ) c = 1; : : : ; C (5.1)

It is easy to see that the class of schedules de�ned in (5.1) is equivalent to the class

1Note that, since the schedule repeats over time, any contiguous chunk of M slots constitutes a
frame. Furthermore, frames on the various channels starting with the transmissions of, say, node
�1, will not be aligned in time (refer also to Figure 5.1).
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of schedules such that the channel sequences (with ��1 as the �rst channel) are the

same for all nodes 2:

vi = (��1; ��2; : : : ; ��C) i = 1; : : : ; N (5.2)

Our examination of this class of schedules is motivated by several factors. First,

the OPEN SHOP algorithm for the OS problem with C = 2 channels [11] produces

optimal schedules within this class. Secondly, for a uniform collapsed tra�c matrix

(i.e., aic = a 8 i; c), optimal schedules within this class do exist for the OSTL problem.

More importantly, this class of schedules greatly simpli�es the analysis, allowing us

to formulate the OSTL problem in a way that provides insight into the properties

of good scheduling algorithms. As a result, for schedules in this class, we have been

able to prove certain optimality properties and derive scheduling algorithms, and have

obtained optimal or near-optimal schedules for a wide range of the system parameters

N , C, and �.

We now proceed to derive su�cient conditions for optimality, as well as algorithms

for constructing optimal schedules within the class of schedules de�ned in (5.1) and

(5.2). In our study, we distinguish between bandwidth limited and tuning limited

networks. As we shall shortly show, di�erent conditions of optimality apply to each

of the two cases; thus, scheduling algorithms specially designed for bandwidth limited

networks perform sub-optimally on tuning limited networks, and vice versa.

5.1 Bandwidth Limited Networks

We start by presenting an alternative formulation of problem OSTL, applicable to

bandwidth limited schedules within the class (5.1). This new formulation will provide

insight into the design of good scheduling algorithms.

Let S be a schedule of length M for a bandwidth limited network, and let

(1; 2; : : : ; N) be the transmitter sequence on all channels. For each channel, con-

sider the frame which begins with the �rst slot assigned to transmitter 1. Let the

2By \equivalent" we mean that if a schedule is such that the transmitter sequence is the same
for all channels, then the channel sequence is the same for all transmitters, and vice versa.
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Figure 5.1: Schedule for a bandwidth limited network

start of the frame on channel �1 be our reference point, and let Kc denote the dis-

tance, in slots, between the start of a frame on channel �c and the start of the frame

on the �rst channel; this is illustrated in Figure 5.1. Note also that K1 = 0.

Consider now the transmissions on, say, channel �c, within a frame of M slots.

Following the a1c slots assigned to transmitter 1, the next a2c slots are assigned to

transmitter 2, unless this assignment does not allow the laser of 2 enough time to

tune from �c�1 to �c. In the latter case, channel �c has to remain idle for a number of

slots before node 2 starts transmitting. In general, we will let gic denote the number

of slots that channel �c remains idle between the end of transmissions by node i and

the start of transmissions by node i + 1; we will refer to quantities gic as the gaps

within the channels.

Based on the above discussion, the problem of �nding an optimum length schedule

such that (a) the schedule is within the class de�ned in (5.1) and (b) the transmitter

sequence is (1; 2; : : : ; N), can be formulated as an integer programming problem, to

be referred to as bandwidth limited OSTL (BW-OSTL), as follows.
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BW � OSTL : min
gic;Kc

M = max
c

(
NX
i=1

(aic + gic)

)
(5.3)

subject to:

Kc +
i�1X
j=1

(ajc + gjc) � Kc�1 +
i�1X
j=1

(aj;c�1 + gj;c�1) + ai;c�1 + �

c = 2; : : : ; C; i = 1; : : : ; N (5.4)

M +
i�1X
j=1

(aj1 + gj1) � KC +
i�1X
j=1

(ajC + gjC) + aiC + � i = 1; : : : ; N (5.5)

gic; Kc;M : integers; gic � 0 8 i; c; K1 = 0; Kc > Kc�1 c = 2; : : : ; C ; M > KC (5.6)

Constraint (5.4) ensures that following its packet transmissions on channel �c�1,

the laser at node i has enough time to switch to wavelength �c. Constraint (5.5) is

essentially the same as the previous one { it ensures that transmitter i has enough

time to tune from channel �C (the last channel) to channel �1 to transmit in the next

frame. These two constraints correspond to the hardware constraints (3.4). The no-

collision constraints (3.5) are accounted for in the above description by the constraint

gic � 0 8 i; c; by de�nition of gic, this guarantees that the slots assigned to node

i + 1 on channel �c will be scheduled after the slots assigned to node i in the same

channel. Since constraint (5.4) and (5.5) are essentially the same, we combine them

and rewrite the above constraints as :

Kc+1 +
i�1X
j=1

(aj;c+1 + gj;c+1) � Kc +
i�1X
j=1

(aj;c + gj;c) + ai;c + �

c = 1; : : : ; C; i = 1; : : : ; N (5.7)

gic; Kc;M : integers; gic � 0 8 i; c; K1 = 0; Kc+1 > Kc c = 1; : : : ; C ; M � KC+1

(5.8)

where all terms with references to channel �C+1 signify the next frame on channel �1.

Note that, �nding an optimal schedule within the class (5.1) for problem OSTL

involves solving N ! BW-OSTL problems, one for each possible transmitter sequence,

and choosing the schedule of smallest frame size. Furthermore, solving problem BW-

OSTL is itself a hard task, as it is an integer programming problem with a non-linear
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objective function, and the size of its state space becomes unmanageable for anything

but trivial values of N and C.

Recall, however, that we are considering bandwidth limited networks. For such

networks, the bandwidth bound (4.1) dominates, therefore, the lower bound on the

schedule length (see (4.3)) is such that

M (l) = M
(l)
bw > M

(l)
t (5.9)

In other words, there can be no schedule of length less than M (l), as there exists at

least one channel �c such that
PN

i=1 aic = M (l). The key observation which we will

exploit in the following analysis is that, if a schedule of length M (l) exists, then at

least one channel, say, channel �c, will never be idle; in terms of the above problem

formulation, this schedule will be such that gic = 0 8 i. It will be shown shortly that

�xing the values of gic for one channel makes it possible to solve problem BW-OSTL in

polynomial time. But �rst, let us attempt to answer a fundamental question related

to the existence of schedules of length M (l) within the class (5.1).

5.1.1 A Su�cient Condition for Optimality

Let A be the collapsed tra�c matrix of a bandwidth limited network, and letM (l)

be the lower (bandwidth) bound on any schedule for A. We now de�ne the average

slot requirement for a source-destination pair as a = M(l)

N
. Our �rst observation is

that if aic = a 8 i; c, then an optimum length schedule is easy to construct; just let

Kc+1 = c (a+�) 8 c; gic = 0 8 i; c; M = M (l) = Na (5.10)

and all of (5.7) { (5.8) will be satis�ed. The question that naturally arises then, is

whether we can guarantee a schedule of M (l) slots when we allow non-uniform tra�c.

The answer is provided by the following lemma.

Lemma 5.1 Let A be a collapsed tra�c matrix such that the lower bound in (4.3)

M (l) =M
(l)
bw > M

(l)
t (bandwidth limited network). Then, a schedule of length equal to

the lower bound, M (l), exists within the class (5.1) for any transmitter sequence, if
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the elements of A satisfy the following condition:

����� aic � M (l)

N

����� � � 8 i; c (5.11)

with � given by:

� =
M (l)

N + 1

�
1

C
�

1

N
�

�

M (l)

�
(5.12)

In proving Lemma 5.1 we will make use of the following result.

Lemma 5.2 If constraints (5.11) on the elements of A hold, then for all P �

f1; : : : ; Ng with j P j= n, and any two channels �c1 and �c2:�����
X
i2P

ai;c1 �
X
i2P

ai;c2

����� � N � (5.13)

Proof (of Lemma 5.2). Because of (5.11), for any n 2 f1; : : : ; Ng, and any channel

�c we get:

n

 
M (l)

N
� �

!
�

X
i2P

aic � M (l) � (N � n)

 
M (l)

N
� �

!
(5.14)

Given the above, the result in (5.13) can be easily derived. 2

We are now ready to prove Lemma 5.1. Note that, although the proof refers to

the problem formulation in (5.3) { (5.6), it does not depend on the actual transmitter

sequence. As a result, it holds for any transmitter sequence, not just the (1; 2; : : : ; N)

sequence implied in (5.3) { (5.6).

Proof (of Lemma 5.1). By our hypothesis, we have that
PN

i=1 aic � M (l) 8 c. For

the proof we consider a worst case scenario, under which the total slot requirement

on each channel is equal to the lower bound:

NX
i=1

aic = M (l) 8 c (5.15)

A schedule of length M (l) under such a scenario would ensure a schedule of length

M (l) for the case when the slot requirement on some channel is less than M (l), as one

can simply introduce slots in which this channel is idle.
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Since we are trying to achieve a schedule of length M (l), and because of the above

worst case assumption, we are seeking a solution to problem BW-OSTL such that

gic = 0 8 i; c (refer also to the objective function (5.3)). We can rewrite constraint

(5.7) as

Kc+1 � Kc �

0
@i�1X
j=1

aj;c �
i�1X
j=1

aj;c+1

1
A + ai;c + � c = 1; : : : ; C; i = 1; : : : ; N

(5.16)

Hence, Lemma 5.2 guarantees that choosing Kc+1 � Kc = N� + M(l)

N
+ � + �; c =

1; : : : ; C, satis�es constraint (5.16). Noting that K1 = 0, we can set:

Kc+1 = c

 
(N + 1)� +

M (l)

N
+ �

!
c = 1; : : : ; C (5.17)

Finally, it is easy to check that letting M = M (l) ensures that (5.8) is also satis�ed.

2

Lemma 5.1 provides an upper bound on the \degree of non-uniformity" of matrix

A in order to guarantee a schedule of length equal to the lower bound. To get a

feeling of how restrictive this bound is, let us rewrite expression (5.12) as

�

M (l)=N
=

N

N + 1

�
1

C
�

1

N
�

�

M (l)

�
(5.18)

For N = 100, C = 10, and ignoring the term �
M(l)

3, we get �
M(l)=N

� :089. Thus, the

variation of elements aic around
M(l)

N
can be up to 8.9% to guarantee a schedule of

lengthM (l). Note, however, that the analysis presented here is not tight; in Appendix

B we present an alternate analysis which relaxes the upper bound on the degree of

non-uniformity of the tra�c matrix by a factor of 2. Also, the proofs are based on

a worst case scenario; in general, we expect such a schedule to exist for signi�cantly

higher degrees of variation.

As a �nal observation, � is greater than zero only when M (l) > NC�
N�C

. This is

consistent with our hypothesis of a bandwidth limited network.

3In general, we expect the frame length to be much greater than �.
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5.1.2 Scheduling Algorithm

Lemma 5.1 provides a su�cient condition for the existence of an optimum length

schedule, but does not state how to construct one. We now develop a polynomial time

scheduling algorithm which, under the conditions of Lemma 5.1, produces schedules

of length M (l). In fact, we shall shortly prove that the algorithm is optimal under

looser conditions that do not impose any bound on the variation of aic around
M(l)

N
.

The key idea behind the algorithm is to schedule the transmissions on the �rst channel

so that this channel is always busy, except maybe after all nodes have been given a

chance to transmit; we expect this strategy to work well when this �rst channel is

the dominant one, that is
PN

i=1 ai1 =M (l).

Algorithm Make Bandwidth Limited Schedule (MBLS) is described in detail in

Figure 5.2, and operates as follows. All the gaps in channel �1 are initialized to

zero; then, during Pass 1, transmissions in channels �2 through �C are scheduled

at the earliest possible time that satis�es constraints (5.4). Doing so, however, may

introduce large gaps into the channels, resulting in a sub-optimal schedule length

(refer to (5.3)). During the second pass then, the algorithm attempts to compact the

gaps within each channel by shifting the slots to the right or left, but only as far as

constraints (5.4) and (5.5) allow.

That algorithmMBLS is correct follows from the fact that it constructs a schedule

which satis�es the constraints (5.4) { (5.6), and hence gives an admissible schedule.

We now state and prove its optimality properties.

Theorem 5.1 Algorithm MBLS constructs a schedule of minimum length among

the schedules that (a) are within the class (5.1) and the sequence of transmitters is

(1; 2; : : : ; N), (b) channel �1 is a dominant channel, and (c) channel �1 is never idle,

except, possibly, at the very end of the frame (i.e., gi1 = 0; i = 1; : : : ; N � 1).

Proof. See Appendix C. 2

Corollary 5.1 (Optimality of Algorithm MBLS) Let �1 be a channel such thatPN
i=1 ai1 = M (l), and arbitrarily label the transmitters 1 through N . Then, under the
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Algorithm Make Bandwidth Limited Schedule (MBLS)

The algorithm assumes that channel �1 is dominant. Also, references to channel �c+1 when

c = C denote the next frame on channel �1.

1. begin

2. Set M =
PN

i=1 ai1

3. Set K1 and all gaps gi1 on �1 equal to 0

// Begin Pass 1

4. for c = 2 to C do

5. for i = 1 to N do

6. Schedule the aic slots at the earliest possible time

such that constraint (5.4) is satis�ed between channels �c and �c�1

7. // end of for c loop

// End of Pass 1 { initial values to all gic have now been determined

8. Let M 0 be the smallest integer satisfying constraint (5.5)

9. Set M = maxfM;M 0g

// Begin Pass 2

10. for c = C downto 2 do

11. for i = N downto 1 do

12. Shift the aic slots as much right as possible while

maintaining constraint (5.4) between channels �c and �c+1

13. for j = i+ 1 to N do

14. Shift the ajc slots as much left as possible while

maintaining constraint (5.4) between channels �c and �c�1

15. // end of for i loop { the �nal values of gaps for this channel determined

16. Let Mc =
PN

i=1(aic + gic)

17. M = max(M;Mc)

18. // end of for c loop { M is now the �nal length of the schedule

19. // end of algorithm

Figure 5.2: Scheduling algorithm for bandwidth limited networks
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Figure 5.3: Schedule for a tuning limited network

conditions of Lemma 5.1, algorithm MBLS constructs an optimum length schedule,

i.e., a schedule of length M (l).

Proof. According to Lemma 5.1, there exists a schedule of length M (l) within the

class de�ned by (5.1), such that the transmitter sequence is (1; 2; : : : ; N). Since �1 is

the dominant channel, any schedule of length M (l) is such that channel �1 is never

idle. Therefore, by Theorem 5.1, algorithm MBLS will construct such a schedule. 2

Regarding the complexity of MBLS, it is easy to verify that the algorithm takes

time O(CN2), regardless of the actual values of the tra�c elements aic.

5.2 Tuning Limited Networks

The analysis and scheduling algorithm presented in the previous section pertain

speci�cally to bandwidth limited networks. We now turn our attention to tuning

limited networks. Since our discussion above focused on how transmissions are sched-

uled within each channel, it is only natural that we now adopt a transmitter's point

of view, and concentrate on how its transmissions are scheduled across the various
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channels 4.

Let S be a schedule of lengthM for a tuning limited network, and let (�1; : : : ; �C)

be the channel sequence for all nodes. For each transmitter we consider the frame

that begins with the �rst slot assigned on channel �1. Let the start of the frame for

node 1 be our reference point, and let Li denote the distance, in slots, between the

start of the frame for node i, and the reference point (see Figure 5.3).

Consider now the transmissions of, say, node i, within a frame of M slots. Fol-

lowing its ai1 slots on channel �1, and a tuning period of � slots in which it tunes

its laser to �2, node i is ready to transmit on that channel. However, node i � 1

may still be transmitting on �2, in which case node i will remain idle for several slots

before it starts transmitting on �2. In general, we let hic denote the number of slots

transmitter i remains idle between the time it has tuned its laser to channel �c+1 and

the start of its transmissions on the same channel.

Based on these observations, the problem of �nding an optimum length schedule

such that (a) the schedule is within the class (5.2) 5, and (b) the channel sequence

is (�1; : : : ; �C) can be formulated as an integer programming problem, referred to as

tuning limited OSTL (T-OSTL):

T �OSTL : min
hic;Li

M = max
i

(
CX
c=1

(aic +�+ hic)

)
(5.19)

subject to:

Li +
c�1X
l=1

(ail +�+ hil) � Li�1 +
c�1X
l=1

(ai�1;l +�+ hi�1;l) + ai�1;c

i = 2; : : : ; N; c = 1; : : : ; C (5.20)

M +
c�1X
l=1

(a1l+�+h1l) � LN +
c�1X
l=1

(aNl+�+hNl) + aNc i = 1; : : : ; N (5.21)

hic; Li;M : integers; hic � 0 8 i; c; L1 = 0; Li > Li�1 i = 2; : : : ; N ; M > LN (5.22)

Constraints (5.20) and (5.21) are essentially the no-collision constraints (3.5); they

ensure that transmissions by some node i on some channel �c start after the end of

4As the reader will soon notice, the following discussion and results mirror those in the previous
section. This con�rms our intuition that bandwidth limited and tuning limited networks are in a
sense dual of each other.

5Recall that classes (5.2) and (5.1) are equivalent.
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transmissions by node i � 1 on the same channel. The hardware constraints (3.4)

correspond to constraints hic � 0 8 i; c.

Note that the above formulation is very similar to the one in (5.3) { (5.6), and

that problem T-OSTL is equally as hard to solve as BW-OSTL. However, in the case

we are considering, the tuning bound dominates, thus

M (l) = M
(l)
t > M

(l)
bw (5.23)

In other words, there exists a transmitter i such that
PC

c=1(aic + �) = M (l). Using

this observation we were able to prove optimality properties and derive a scheduling

algorithm for tuning limited networks. In the following, however, the various proofs

are omitted, as they are very similar to the corresponding proofs for the bandwidth

limited case presented earlier.

5.2.1 A Su�cient Condition for Optimality

For tuning limited networks we de�ne the average slot requirement (which now

includes both transmission and tuning slots) as a0 = M(l)

C
. Then, the following lemma,

analogous to Lemma 5.1, provides a su�cient condition for the existence of a schedule

of length M (l).

Lemma 5.3 Let A be a collapsed tra�c matrix such that the lower bound in (4.3)

M (l) = M
(l)
t > M

(l)
bw (tuning limited network). Then, a schedule of length equal to

the lower bound, M (l), exists within the class (5.2) for any channel sequence, if the

elements of A satisfy the following condition:

����� (aic + �) �
M (l)

C

����� � �0 8 i; c (5.24)

with �0 given by:

�0 =
M (l)

C + 1

�
�

M (l)
+

1

N
�

1

C

�
(5.25)

The proof of Lemma 5.3, uses the following result, similar to Lemma 5.2. Both

proofs are omitted. Observe also that �0 is greater than zero only when M (l) < NC�
N�C

.
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Lemma 5.4 If constraints (5.24) on the elements of A hold, then for all Q �

f1; : : : ; Cg with j Q j= k, and any two transmitters, i and j:

������
X
c2Q

(aic +�) �
X
c2Q

(ajc +�)

������ � C �0 (5.26)

Note that as in the bandwidth limited case, the upper bound in Lemma 5.3 on

the degree of non-uniformity of the tra�c matrix in order to guarantee a schedule of

length equal to the lower bound can be improved by a factor of 2 by a tighter analysis

analogous to the one presented in Appendix B.

5.2.2 Scheduling Algorithm

As in the case of bandwidth limited schedules, we have developed a scheduling

algorithm for tuning limited networks which is optimal under the conditions of Lemma

5.3. This algorithm, which we will call Make Tuning Limited Schedule (MTLS), is

very similar to MBLS, and is omitted. The key idea is to schedule the slots of a

certain node so that its transmitter is never idle, except possibly at the end of a

frame. The optimality properties of the MTLS algorithm are now stated without

proof.

Theorem 5.2 Algorithm MTLS constructs a schedule of minimum length among

the schedules that (a) are within the class (5.2) and the sequence of channels is

(�1; : : : ; �C), (b) transmitter 1 is a dominant transmitter, and (c) transmitter 1

is never idle, except, possibly, at the very end of the frame (i.e., h1c = 0; c =

1; : : : ; C � 1).

Corollary 5.2 (Optimality of Algorithm MTLS) Let transmitter 1 be such thatPC
c=1(a1c+�) = M (l), and arbitrarily label the channels �1 through �C. Then, under

the conditions of Lemma 5.3, algorithm MBLS constructs an optimum length schedule,

i.e., a schedule of length M (l).
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5.3 Tuning and Bandwidth Balanced Networks

The last two sections considered the operation of the network in two distinct

regions, the bandwidth and tuning limited regions, respectively. We now study the

e�ect of operating the network at the boundary of the two regions, namely, when the

tuning and bandwidth bounds are equal:

M (l) = M
(l)
t = M

(l)
bw (5.27)

In particular, we show that if (5.27) holds, even arbitrarily small non-uniformities in

the tra�c pattern may result in every admissible schedule having length greater than

the lower bound M (l). Our claim is stated in the following theorem; note that neither

the theorem nor its proof refer to the class of schedules de�ned by (5.1) and (5.2),

therefore, this result holds for arbitrary schedules, not only the ones implied by (5.1)

or (5.2).

Theorem 5.3 Let A be a collapsed tra�c matrix such that the bandwidth and tuning

bounds are equal, and such that each transmitter and each channel are tight (i.e., the

slot requirement on each channel is equal to the lower bound, and the slot-plus-tuning

requirement of each transmitter is also equal to the lower bound). Then, the optimal

schedule has length strictly greater than the lower bound, even for any arbitrarily small

non-uniformity among the elements of matrix A.

Proof. Consider a system of N � 2 nodes, C � 2 channels, and � tuning slots.

Further suppose that

a =
C

N � C
� (5.28)

is an integer. Letting aic = a 8 i; c, we then obtain a uniform collapsed tra�c matrix

satisfying the conditions of the theorem, i.e., such that the bandwidth bound M
(l)
bw =

Na is equal to the tuning bound M
(l)
t = C(a+�), and such that all transmitters and

channels are tight.

Let us now modify some of the elements of this uniform matrix to construct a non-

uniform matrix A that continues to satisfy the conditions of the theorem. Observe,

then, that at least four elements have to be appropriately modi�ed to achieve this
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result. For if for some i; c1, we let ai;c1 < a, we have to appropriately increase

ai;c2; c2 6= c1, to make transmitter i tight again. And to make channels �c1 and �c2

tight again, the least number of elements that need to be changed are the two elements

aj;c1 and aj;c2, for some transmitter j 6= i. We now let the matrix A be such that

a11 = a22 = a� �; a21 = a12 = a+ �; aic = a for all other i; c (5.29)

for some arbitrary � < 1. It is easy to verify that M
(l)
t = C(a+�) = Na =M

(l)
bw , and

that all channels and transmitters are tight. Also, based upon the above discussion,

this tra�c matrix is as close to the uniform matrix as possible, while still satisfying

the conditions of the theorem.

Suppose now that a schedule of length Na = C(a +�) exists. Then neither any

channel nor any transmitter can be idle at any time instant in such a schedule. Also,

assuming that the schedule starts at time 0, all transmissions on channels �3 through

�C begin and end at integral time values; similarly for transmissions by stations 3

through N .

Without loss of generality, assume that node 1 is before node 2 in the transmitter

sequence of channel �1 in this schedule, and let i > 2 be the transmitter immediately

before node 1 in this sequence. Let t be the time i's transmission on �1 ends; then

t must be integral. Since channel �1 is never idle, the transmission by node 1 on �1

starts at time t, and ends at time t+ a� �. At that (non-integral) time, node 2 is the

only candidate for immediate transmission on �1, so node 2 must start transmitting

on �1 at time t+ a� �. Node 1, on the other hand, after a tuning period of � slots,

is ready for its next transmission at time t + a � � + �; since this is a non-integral

time, and since node 1 can never be idle, it can only start transmission on channel

�2. Using similar arguments, node 2's transmission must have just ended on channel

�2. We have established that, under this schedule, on channel �1 node 1 transmits

from time t to time t + a� �, and node 2 from time t+ a� � to time t+ 2a, and on

channel �2 node 2 transmits from time t+� to time t+�+ a� �, and node 1 from

time t +� + a � � to time t + �+ 2a. But, regardless of the values of a, �, and �,
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this sequence of transmissions is impossible 6, contradicting our hypothesis that an

admissible schedule of length equal to the lower bound Na = C(a+�) exists. 2

In this chapter we have de�ned a class of schedules for which we have presented

algorithms that construct optimal schedules under certain conditions. In the next

chapter, we consider the performance of these algorithms when these optimality con-

ditions do not hold, and develop heuristics which improve performance under these

circumstances.

6For instance, if � < a��, we have t+� < t+a�� < t+�+a�� < t+2a, and the transmissions
of node 2 on channels �1 and �2 overlap; similarly for � > a� �.
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Chapter 6

Optimization Heuristics

In the previous chapter we presented scheduling algorithms which construct sched-

ules of length equal to the lower bound as long as tra�c parameters aic satisfy certain

conditions. However, we have seen that OSTL is NP-complete, meaning that an al-

gorithm that e�ciently solves any arbitrary instance of OSTL (i.e., one in which aic

may not satisfy the optimality conditions) may not exist. Hence, the most we can

hope for is to be able to devise a heuristic that can be expected to perform well for

general tra�c matrices. We now develop a scheduling heuristic for bandwidth limited

networks; using a very similar reasoning, it is relatively straightforward to determine

a heuristic for tuning limited networks.

Recall that for bandwidth limited networks, �nding a schedule within the class

(5.1) that solves the OSTL problem involves solvingN ! BW-OSTL problems (see (5.3)

{ (5.6)), one for each possible transmitter sequence; obviously, no polynomial-time

heuristic can consider that many sequences. On the other hand, we have no e�cient

algorithm for solving the most general version of BW-OSTL, but we have developed

MBLS, a polynomial time algorithm that solves BW-OSTL for a given transmitter

sequence under the additional constraint that any idling of the �rst channel occurs

after all nodes have transmitted on that channel (refer also to Theorem 5.1). With

these considerations in mind, our approach to obtaining near-optimal schedules for

OSTL is based on making two compromises:
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� Suppose that an optimal transceiver sequence for a network of n nodes has been

determined, and that a new node is added to the network (that is, a new row

is added to the collapsed tra�c matrix A, while all other elements remain as

before). Instead of checking all possible (n+1)! transmitter sequences, our �rst

approximation is to assume that, in the optimal sequence for the (n + 1)-node

network, the relative positions of nodes 1 through n are the same as in the

sequence for the n-node network; thus, we only need to determine where in the

latter sequence node n+1 has to be inserted (i.e., before the �rst node, between

the �rst and second nodes, etc.). This can be accomplished by solving n + 1

BW-OSTL problems on a (n+1)-node network, one for each possible placement

of node n+ 1 within the initial sequence of n nodes.

� Our second compromise has to do with the fact that we have no e�cient al-

gorithm for BW-OSTL. Thus, we let �1 be the dominant channel, and use

algorithm MBLS to solve the version of BW-OSTL which requires that �1 is

never idle except at the end of the frame. From Theorem 5.1, we know that if a

schedule of length equal to the lower bound exists for the given transmitter se-

quence, MBLS will �nd such a schedule. But if the optimal schedule has length

greater than the lower bound, MBLS may fail to produce an optimal solution as

the idling in the �rst channel may be anywhere within the frame, not necessarily

at the end. Numerical results to be presented, however, do suggest that overall

the performance of MBLS is very close to being optimal.

For bandwidth limited networks, our heuristic is described in Figure 6.1. About

the complexity of the heuristic, note that Step 2 will dominate. During the i-th

iteration of Step 2, algorithmMBLS is called i times on a network of i nodes. Since

the complexity of MBLS on a network of i nodes is O(Ci2), the overall complexity

of the heuristic is O(CN4).

It is very easy to come up with a similar algorithm for the tuning limited case. In-

stead of adding one node at a time, the Tuning Limited Scheduling Heuristic (TLSH)

would add one channel at a time. It can be veri�ed that the complexity of TLSH

would be O(C3N2)
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Bandwidth Limited Scheduling Heuristic (BLSH)

1. Relabel the channels such that:

M (l) =
NX
i=1

ai1 �
NX
i=1

ai2 � : : : �
NX
i=1

aiC (6.1)

Arbitrarily label the transmitters as 1; : : : ; N , and let s(1) = (1). Repeat Step

2 for i = 2; : : : ; N .

2. Let s(i�1) = (�1; : : : ; �i�1) be the permutation produced by the previous itera-

tion on a network with only the �rst i� 1 transmitters of the original network.

Consider transmitter i. Run algorithm MBLS on each of the i permutations

(i; �1; : : : ; �i�1); : : : ; (�1; : : : ; �j; i; �j+1; : : : ; �i�1); : : : ; (�1; : : : ; �i�1; i) (6.2)

Let s(i) be the permutation that results in the least length schedule.

Figure 6.1: Scheduling Heuristic

In the next chapter, we run the various algorithms we have developed so far

on random tra�c matrices and study their relative performance. Since the optimal

schedule length is impossible to compute, we judge the performance of each algorithm

by comparing its outcome to the lower bound developed in chapter 4.
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Chapter 7

Numerical Results

We now consider four di�erent algorithms for the OSTL problem and compare

their performance. The four algorithms are:

1. algorithm MBLS, described in Figure 5.2; the algorithm is applied after the

channels have been labeled �1 through �C in decreasing order of
PN

i=1 aic, and

the transmitters have been labeled 1 through N in decreasing order of
PC

c=1 aic;

2. algorithm MTLS, with the same labeling of both channels and transmitters;

the algorithm has not been described here, but is very similar to MBLS, only

targeted to tuning limited networks;

3. scheduling heuristic BLSH, described in Figure 6.1;

4. scheduling heuristic TLSH for tuning limited networks; again, this heuristic has

not been described, but is very similar to BLSH.

We have generated random instances of the OSTL problem, i.e., random matrices

A for various values of N , C, and �, and fed them as input to the algorithms. Given

A, the lower bound M (l) on the schedule length can be obtained from (4.3), (4.2) and

(4.1). Let M be the actual length of a schedule for A produced by some scheduling

algorithm. Then the quantity
M

M (l)
100% (7.1)



42

represents how far the length M of the schedule produced by the algorithm is from

the lower bound. All �gures in this chapter plot the quantity in (7.1) against the

number of nodes, N , for the four algorithms described above. Each point plotted

represents the average of twenty di�erent matrices A for the stated values of N , C,

and �.

For the results shown in Figures 7.1 { 7.12, the elements of each matrix A

were chosen, with equal probability, among the integers 1 through 20 (this is the

uniform(1; 20) distribution). We show four sets of three �gures each, corresponding

to the four values of the number of channels C = 5; 10; 15; 20. Within each set with

the same value of C we use three di�erent values for �, namely � = 1; 4; 16. The

number N of nodes within each �gure takes values from C to 80. Note that, for

data rates of 1 Gigabits per second, and packet sizes equal to the ATM cell size (53

bytes), the packet transmission time (slot length) is 424ns. Hence the three values of

� considered here correspond to transceiver tuning times of 424ns, 1.7�s, and 6.8�s,

respectively; the last two values are representative of the current state of the art in

optical transceiver technology [12].

Let us now concentrate on the relative performance of the four algorithms. Our

�rst observation is that the two heuristics, BLSH and TLSH, always perform as good

as, or better than the corresponding algorithms,MBLS andMTLS, respectively. This

is in fact expected. As explained above, we applied algorithms MBLS and MTLS to

a single transmitter and channel sequence; since the random tra�c matrices do not

necessarily satisfy the optimality conditions of Lemmas 5.1 and 5.3, these algorithms

may fail to produce an optimal schedule. Heuristic BLSH (respectively, TLSH) on

the other hand, callsMBLS (respectively, MTLS) on several transmitter (respectively,

channel) sequences, and is more likely to construct schedules of length close to the

lower bound.

The results also con�rm our intuition regarding the two regions of network opera-

tion, and justify the need for algorithms specially designed for each region. Let us, for

the moment, refer to Figure 7.6 which shows results for C = 10;� = 16. As we can

see, algorithms MBLS and BLSH outperform their counterparts, MTLS and TLSH,

respectively, when N > 25, while the opposite is true for N < 25. Indeed, for these
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Figure 7.1: Algorithm comparison for C = 5 channels and � = 1 tuning slots
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Figure 7.2: Algorithm comparison for C = 5 channels and � = 4 tuning slots



44

0 10 20 30 40 50 60 70 80

Number of nodes, N

0

4

8

12

16

% from

lower bound

?

? ?

? ? ? ? ? ? ? ? ? ? ? ? ?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..................................................................................................................................................................................................................................................................................................................................................................................................

? MBLS

� �

� �

� �
� � � �

�
� �

� � �

......
.......
........
.......
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..................................

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.........
.........
..........
......
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.........................................................................

....
....
...
....
....
...
....
.......
....
...
....
...
...
....
...
....
...
....
...
....
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..........................................................................

....
....
...
....
....
...
....
......................................

� MTLS

�
� �

� � � � � � � � � � � � �
..
.
..
..
.
..
..
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
...................................

.

..

..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
...
..
..
.
.................................................................................................................................................................................................................................................................................................................................................................................................

� BLSH

� �
�

�
� � � � � � �

� � �
�
�

.................................
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
..
.
.........................................

...
...
..
..
...
..
..
...
..
..
...
...
....................................

..
..
..
...
..
...
...
..
...
..
...
..
...
.....................................................................

...
..
...
...
...
...
...
...
...
...
..........................................................................................

..............
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
........................................

� TLSH

C = 5

� = 16

Figure 7.3: Algorithm comparison for C = 5 channels and � = 16 tuning slots
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Figure 7.4: Algorithm comparison for C = 10 channels and � = 1 tuning slots
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values of C and �, and the way the tra�c matrices are constructed, a network is in the

bandwidth limited region if it has more than 25 nodes, and in the tuning limited re-

gion, otherwise (see 4.9). It should come as no surprise, then, that algorithms MBLS

and BLSH (respectively, MTLS and TLSH), designed for bandwidth (respectively,

tuning) limited networks, perform very close to the optimal within their intended

region of operation, and sub-optimally within the other. Very similar observations

can be made for all other �gures presented here.

The �gures can also explain how the point at which the network becomes tuning

or bandwidth limited depends on the system parameters N , C, and � (the tra�c

parameters are the same for all �gures, so they do not play a role at this point;

we will consider their e�ect shortly). Consider Figures 7.4 { 7.6, corresponding to

the same value of C = 10. As the value of � increases, a larger number of nodes

N is needed if expression (4.9) is to be satis�ed 1. This is indeed reected in the

above �gures, as the point at which algorithms MBLS and BLSH outperform MTLS

and TLSH, respectively, moves to the right (i.e., towards greater values of N) as �

increases from 1 to 16. Similarly, if we concentrate on how the number C of channels

alone a�ects the region of operation, we can see from, say, Figures 7.2, 7.5, 7.8, and

7.11, all of which show results with � = 4, that for larger C it takes more nodes to

keep the network in the bandwidth limited region; this is in accordance to (4.9), as

expected.

Let us now consider the performance of MBLS and BLSH for bandwidth limited

networks; very similar conclusions can be drawn regarding the performance of MTLS

and TLSH in the tuning limited region. From the various �gures we observe that, in

general, the length of schedules produced by MBLS and BLSH are very close to the

lower bound, and that, for networks well within the bandwidth limited region (i.e., for

su�ciently largeN), BLSH, and sometimesMBLS, construct schedules of length equal

to the lower bound. This is a very important result, as it establishes that the lower

bound accurately characterizes the scheduling e�ciency in this type of environment.

1Note that the total tra�c demand D in (4.9) can be expressed as NC�, where � is the average
transmitter-channel slot requirement. For the uniform(1; 20) distribution we consider here, � =
10:5.
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Figure 7.5: Algorithm comparison for C = 10 channels and � = 4 tuning slots
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Figure 7.6: Algorithm comparison for C = 10 channels and � = 16 tuning slots
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Figure 7.7: Algorithm comparison for C = 15 channels and � = 1 tuning slots
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Figure 7.8: Algorithm comparison for C = 15 channels and � = 4 tuning slots
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Since the lower bound is independent of the tuning latency in this region, this result

also implies that it is possible to appropriately dimension the network to eliminate

the e�ects of even large values of tuning latency.

Another important observation is that, although the four algorithms perform very

close to the lower bound within their respective regions of operation, they deviate

from it for values of N in the boundary of the tuning and bandwidth limited regions

(although they are never more than 30% away from the lower bound, and in many

cases they are as close as 15%). This can be explained by noting that, for those values

of N , the tuning and bandwidth bounds are close to each other. When there are

several channels and nodes with similar slot requirements, the scheduling algorithms

have less exibility in placing the various slots to obtain schedules of length close

to the lower bound. A similar behavior was observed in [2] for SRA, a scheduling

algorithm that operates under a totally di�erent strategy. Combining these results

with Theorem 5.3 suggests that the behavior of our algorithms in the boundary

between the tuning and bandwidth limited regions is not due to ine�ciency inherent

to the algorithms, but is rather due to the fact that the optimal schedules in this

region have length greater than the lower bound.

We now study the e�ect of the tra�c demands on the operation of the network.

In Figure 7.13 we plot the performance of the four algorithms for C = 10 channels

and � = 16 tuning slots. In this case, however, the elements of matrix A were

selected from the uniform(1; 40) distribution. Comparing to Figure 7.6 which plots

results for the same values of C and �, but with the tra�c parameters aic selected

from the uniform(1; 20) distribution, we see that the point at which the network

becomes bandwidth limited has moved to the left (i.e., towards a smaller number of

nodes); this is in accordance to (4.9). We also observe that the behavior of the four

algorithms is very similar to the one observed before. Finally, in Figure 7.14 we plot

results for C = 10 and � = 16, but now elements aic have been selected according

to a bimodal distribution as follows: with probability 1
2
an element is chosen from

the uniform(1; 7) distribution, and with probability 1
2
from the uniform(14; 20)

distribution (the mean, however, is the same as the uniform(1; 20) distribution in

Figure 7.6). As we can see the plots of Figure 7.14 are very similar to the ones in
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Figure 7.9: Algorithm comparison for C = 15 channels and � = 16 tuning slots
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Figure 7.10: Algorithm comparison for C = 20 channels and � = 1 tuning slots
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Figure 7.11: Algorithm comparison for C = 20 channels and � = 4 tuning slots
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Figure 7.12: Algorithm comparison for C = 20 channels and � = 16 tuning slots
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Figure 7.6, especially within the bandwidth and tuning limited regions. In general,

we have noticed that the quality of the schedules produced by the four algorithms is

not signi�cantly a�ected by the actual distribution of the tra�c demands.

Based on the results presented here, we conclude that BLSH and TLSH achieve

the best performance within the bandwidth and tuning limited regions, respectively.

Algorithms MBLS and MTLS can achieve almost similar performance, but they are

more e�cient in terms of their running time requirements. The best algorithm for a

given system will then depend not only on the region of operation, but also on the

desired tradeo� between quality of the �nal schedule and speed.
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Figure 7.13: Algorithm comparison for C = 10 channels and � = 16 tuning slots
(uniform(1; 40) distribution)

0 10 20 30 40 50 60 70 80

Number of nodes, N

0

4

8

12

16

20

% from

lower bound ?

?

?
?

?

?
? ?

? ?
? ? ? ? ?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...
...
...
...
...
...
...
...
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.........................................

...
....
...
...
...
....
...
...
...
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
....................................................................................

...................................................................................................................

? MBLS

� �
�

�

� �

� � � � � � � �
�

..
..
...
...
...
...
...
...
...
...
...
...
...
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..................................

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.......
....
....
....
....
.....
....
......................................

....
.....
....
....
....
....
.......
......
......
......
......
..........................................................................

....
.....
.....
.....
.....
.....
...
..
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
..

� MTLS

� �

� �

�

� � � � � � � � � �

....
....
...
....
....
....
....
...
....
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
..
..
...
...
...
...
...
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..............................................

............
..............................................................

...........................................................................................................................................................................

� BLSH

� �
�

� �

�

�
� � �

�

�

�
�
�

.................................
..
..
..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
..
...
..
...
...
..
...
..
...
..
...
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
....
...
...
...
...
...
...
...
..
...
...
....
...
..
...
...
..
...
...
..
...
...
..
....
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
..
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.......................................

..

..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..

� TLSH

C = 10

� = 16

Figure 7.14: Algorithm comparison for C = 10 channels and � = 16 tuning slots
(bimodal distribution)
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Chapter 8

Summary and Future Research

8.1 Summary

We have considered the problem of designing TDM schedules to accommodate

arbitrary tra�c demands in a broadcast optical network. Our objective was to inves-

tigate the e�ects of transceiver tuning latency on the length of the schedule, which

is a measure of both delay and throughput. Based on the insight provided by an ap-

propriate new formulation of the scheduling problem, we presented algorithms which

construct schedules of length very close to, or equal to the lower bound. We also

established that, as long as the network operates within the bandwidth limited re-

gion (as determined by system parameters such as the number of nodes, the number

of wavelengths, and the number of tuning slots), even large (relative to the packet

transmission time) values of the tuning latency have no e�ect on the length of the

schedule. The main conclusion of our work is that through careful design, it is pos-

sible to realize single-hop WDM networks operating at very high data rates, using

currently available optical tunable devices.

8.2 Future Research

Though we have outlined e�cient algorithms for constructing optimal or near-

optimal TDM schedules given the tra�c matrix, there is ample scope for future
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research in developing distributed protocols which will implement these ideas in an

actual network. In particular, issues related to how the global tra�c matrix infor-

mation is to be shared, whether the algorithm should be run at a central node or

in a distriubuted fashion, and whether the signalling should be in-band or out-of-

band need to be addressed. Currently we are working on a protocol that will reliably

provide the global information required by the algorithms presented here.

Another direction for future research would be to mathematically analyze the

throughput and delay performance of a network which uses the algorithms for TDM

scheduling developed in this thesis and which has a speci�ed arrival pattern. For

a packet-switched network, it would be interesting to determine the load conditions

under which the scheduling algorithm would result in the network queues being sta-

ble. For a virtual-circuit based network (an ATM network for example), it would be

interesting to study the e�ect of the proposed scheduling algorithms on the Quality

of Service (QoS) guarantees (like cell delay, cell loss and cell jitter). This is going the

focus of our research in the near future.
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Appendix A

Proof that OSTL is NP-complete

for C = 2 Channels

We now show that OSTL is NP-complete, even when the number of wavelengths

C = 2. As in [11], the proof uses a transformation from PARTITION, a well-known

NP-complete problem [10] described below. However, our proof is substantially

di�erent, reecting the fact that (a) the transformation is to an instance of OSTL

with C = 2 channels, while the transformation in [11] is to an instance of OS with

C = 3 channels, and (b) the tuning latency, �, is now an inuencing parameter.

Problem A.1 (PARTITION) Given a set V = f1; 2; : : : ; ng with wi the weight of

element i, and W =
Pn

i=1wi, is there a partition of V into two sets, V1 and V2, such

that
P

i2V1 wi =
P

j2V2 wj =
W
2
? (The wi's may be assumed integer.)

Proof (of Theorem 4.1). It is easy to see that OSTL is in the class NP, since a

nondeterministic algorithm need only (a) guess the optimal set of start slots f�icg

satisfying constraints (3.4) and (3.5), and (b) verify that the length of the schedule

is less than or equal to M .

We now transform PARTITION to OSTL; note that it is su�cient to �nd a

transformation for the case C = 2. Let V = f1; 2; : : : ; ng be the set of elements of

weights wi; i = 1; : : : ; n, making up an arbitrary instance of PARTITION, and let

W =
Pn

i=1wi. We construct an instance of OSTL with N = n + 1 stations, C = 2
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wavelengths, � = W 2

2
, M = 3W 2

2
+W , and a collapsed tra�c matrix, A, such that:

ai1 = wi; ai2 = (W + 1) wi; i = 1; : : : ; n (A.1)

an+1;1 = W 2; an+1;2 = 0 (A.2)

It is obvious that this transformation can be performed in polynomial time. We

now show that a schedule of length 3W 2

2
+W exists for the above instance of OSTL

if and only if V has a partition. If V has a partition, V1;V2, then there is a schedule

of length equal to 3W 2

2
+W ; one such schedule is shown in Figure A.1 (the initial

tuning period of � slots is not shown there). Conversely, if an OSTL schedule of

length 3W 2

2
+W exists, then V has a partition. This is shown in the following.

Let S = f�icg; i = 1; : : : ; n + 1; c = 1; 2, be a schedule of length 3W 2

2
+W . The

�rst � = W 2

2
slots are used for tuning of the transmitters to the �rst channel in their

respective channel sequence, so let us consider the remaining W 2 +W slots. Also let

our reference point (i.e., slot 1) be the �rst slot following these initial � slots. SincePn
i=1 ai2 =W 2+W , all these slots of the schedule will contain a transmission by some

source on channel �2. Now, the start slot, �n+1;1, of station n+1 on channel �1, must

be > 1. Otherwise, stations 1 through n are all assigned to transmit on channel �1

in slots W 2 + 1 through W 2 +W . But then, since � = W 2

2
, the hardware constraint

(3.4) would not be satis�ed for the station, say, i, assigned to transmit on channel

�2 in slot W 2 + W
2
, contradicting the hypothesis that S is an admissible schedule.

Similarly, it can be shown that �n+1;1 � W ; in other words, station n + 1 is not

assigned to transmit in slots W +1 through W 2+W . As a result, stations 1 through

n are divided into two sets, V1 and V2, such that all stations in V1 (respectively, V2)

have start slots on channel �1 less than �n+1;1 (respectively, greater than or equal to

�n+1;1 + an+1;1).

Let W1 =
P

i2V1 wi and W2 =
P

j2V2 wj. Without loss of generality, let W1 � W2;

the case W1 � W2 is handled similarly. Then, W1 =
W
2
+ e, where e � 0. Since S

satis�es the hardware constraints (3.4), we have that, for all i 2 V1: �i1+ai1+� � �i2.

But �i1 � 1 and ai1 � 1 for all stations 1 through n, therefore �i2 � �+2 = W 2

2
+2, for

all i 2 V1, leaving a total of at most W 2+2W
2

� 1 slots for transmissions by stations in
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� -� -

� -� -� -

�1

�2

� �

W
2 slotsW 2 slots

aj2 j j 2 V2 ai2 j i 2 V1

an+1;1

W
2 slots

ai1 j i 2 V1 aj1 j j 2 V2

Figure A.1: Optimum length schedule when V has a partition V1;V2 (the initial tuning
period of � = W 2

2
slots is not shown)

V1 on �2. Also, the total number of slots allocated to stations in V1 for transmissions

on channel �2 must be equal to
P

i2V1 ai2 = (W + 1)
�
W
2
+ e

�
. Then,

W 2 + 2W

2
�1 � (W +1)

�
W

2
+ e

�
) e �

W � 2

2W + 2
<

1

2
8 W > 0 (A.3)

Since W1 =
W
2
+ e must also be an integer, e must be zero. In other words, W1 =

W2 =
W
2
, and V1;V2 constitute a partition of V. 2
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Appendix B

Modi�ed Su�ciency Conditions for

existence of an Optimal Schedule

in a Bandwidth-Limited Network

The upper bound on the degree of non-uniformity � of matrix A in order to guar-

antee a schedule of length equal to the lower bound in Lemma 5.1 (and as rewritten

in equation (5.18)) is not tight, and can be improved upon. This is exactly what we

intend to show now. We �rst prove the following Lemma :

Lemma B.1 If constraints (5.11) on the elements of A hold, then for any subset T

of transmitters from f1; : : : ; Ng such that j T j= n, and any channel �c:

nM (l)

N
�

N �

2
�

X
i2T

ai;c �
nM (l)

N
+

N �

2
(B.1)

Proof (of Lemma B.1). Follows from equation (5.11) by using an argument very

similar to the one used in the proof of Lemma 5.2. 2

In the proof of Lemma 5.1 we had, in order to satisfy constraint (5.16), set Kc+1�

Kc = N:� + (M (l)=N + �) + �, thereby ensuring a valid schedule, but this was an

overkill in the sense that we are unnecesarily choosing such a large value forKc+1�Kc

though the right side in equation (5.16) might be much smaller. So the logical thing

to do would be to set the smallest possible value for Kc+1 �Kc, so that we not only
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have a feasible schedule but also a schedule which is as small as possible. So we set

Kc+1�Kc to be the largest possible value of the right side in equation (5.16). Thus, if

nc is the value of i which maximizes the expression on the right side in the equation,

we can set :

Kc+1 �Kc = (
nc�1X
j=1

aj;c �
nc�1X
j=1

aj;c+1) + anc;c +� c = 1; : : : ; C (B.2)

Writing out the above equation for all the channels (i. e. from c = 1 through c = C),

and adding up the equations, we get :

KC+1 = f
n1�1X
j=1

aj ;1 +
CX

c=2

(
nc�1X
j=1

aj ;c �
nc�1�1X
j=1

aj ;c)�
nC�1X
j=1

aj ;Cg+
CX

c=1

anc;c + C� (B.3)

where we have combined the same-channel-terms, and used the fact that K1 equals

zero. The above equation can be expressed in more compact notation by introducing

numbers n0 and nC+1, both equal to 1, as follows :

KC+1 =
C+1X
c=1

(
nc�1X
j=1

aj ;c �
nc�1�1X
j=1

aj ;c) +
CX

c=1

anc ;c + C� (B.4)

where n0 = nC+1 = 1. Now de�ne the set S to be a subset of f1; 2; : : : ; Cg such that

c 2 S if and only if nc � nc�1. Then equation (B.4) can be written as :

KC+1 = f
X
c2S

(
nc�1X

j=nc�1

aj ;c)�
X
c2S

(
nc�1�1X
j=nc

aj ;c)g+
CX

c=1

anc ;c + C� (B.5)

Let jSj = k. Then, from Lemma B.1 we have :

X
c2S

(
nc�1X

j=nc�1

aj ;c) � [
X
c2S

(nc � nc�1 )]
M (l)

N
+

kN �

2
(B.6)

and also : X
c2S

(
nc�1�1X
j=nc

aj ;c) � [
X
c2S

(nc�1 � nc)]
M (l)

N
�

(C � k)N �

2
(B.7)

Subtracting (B.7) from (B.6), and noting that all but one term cancel out on the

right hand side, we have :

X
c2S

(
nc�1X

j=nc�1

aj ;c)�
X
c2S

(
nc�1�1X
j=nc

aj ;c) �
CN �

2
(B.8)
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Using this in equation (B.5) and using equation (5.11) to bound the value of ai;c,

we have an upper bound on KC+1 :

KC+1 �
CN �

2
+ C (

M (l)

N
+ �) + C� (B.9)

Since we require that M (l) � KC+1, we can guarantee that if :

M (l) �
CN �

2
+ C (

M (l)

N
+ �) + C� (B.10)

or, equivalently, if :

�

M (l)=N
�

2

1 + 2=N
(
1

C
�

1

N
�

�

M (l)
) (B.11)

Compare this to equation (5.18) and note that equation (B.11) almost gives a

factor 2 improvement on the upper bound of the tra�c non-uniformity. For the

example of a system with N = 100, C = 10, and ignoring the term �
M(l) (as in chapter

5), we get �
M(l)=N

� :176, and thus the variation of elements aic around
M(l)

N
can be

up to 17.6% to guarantee a schedule of length M (l).
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Appendix C

Proof of Optimality of MBLS

We now prove Theorem 5.1.

Proof (of Theorem 5.1). Let Sched(c) denote the frame of the schedule on channel �c

starting with the �rst slot in which transmitter 1 transmits on channel �c. Sched(C+1)

refers to the next frame on channel �1. Note that once the schedule length M and

the gaps gic; i = 1; : : : ; N � 1, are known, the gap gNc after the last transmitter is

uniquely determined. Therefore we are not interested in the gaps that follow the last

transmitter on each channel, and any reference to \gaps" in what follows does not

include this last gap on each channel.

Let OPT denote the optimal schedule length under the assumptions of Theorem

5.1. We will prove that OPT �M , hence proving that OPT = M . To do so, we trace

through the algorithm as it computes M and show that OPT � M at every step of

the algorithm.

That OPT � M at the end of Step 2 is obvious, since the optimal can be no

smaller than the lower bound. In Pass 1, all transmitters are assigned the earliest

possible slots on each channel, and Step 9 makes sure that the schedule length is large

enough so that each transmitter gets enough time to tune back to channel �1 after

its transmission on channel �C (in fact this is exactly what constraint (5.5) tries to

capture). Therefore OPT �M at the end of Pass 1.

In Pass 2, channels as well as transmitters are processed in reverse order, and

the algorithm tries to compact the gaps gic; i = 1; : : : ; N � 1; c = 2; : : : C, as much
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as possible. We show that once the gaps on a channel �c have been compacted by

Pass 2 of the algorithm above, it is not possible to compact them any further to

reduce the schedule length, thus proving that OPT � M . The proof is by a two-

level induction { the �rst on c and the second on i within the same channel �c. The

induction proceeds by assuming that Sched(c+1) is optimal (meaning that the gaps

on channel �c+1 cannot be compacted any further), and that transmitters i+ 1 : : :N

are optimally scheduled on channel �c (i.e., that the gaps gi+1;c : : : gN�1;c cannot be

compacted any further; note that gap gNc is not considered), and then showing that

the gap gic cannot be compacted any more than what Pass 2 does. There are only

2 ways gap gic can be compacted { either by moving the aic slots to the right, or by

moving slots ajc; j = i+ 1; : : : ; N; to the left. But the aic slots cannot be moved any

more to the right (otherwise Step 12 would have done so), neither can slots ajc be

moved any more to the left (otherwise Step 14 would have done so). Hence gap gic is

as compact as can be, and hence channel �c is optimal by induction. To complete the

induction proof, note that the inductive hypothesis holds for c = C, since Sched(C+1)

is the same as the schedule on channel �1, which is optimal by assumption, as we

only consider schedules in which channel �1 is idle only at the end of the frame (this

will happen if at the end of the algorithm M >
PN

i=1 ai1).


