
ABSTRACT

KHARE, SHRIKRISHNA G. Testbed Implementation and Performance Evaluation of the
Tiered Service Fair Queuing (TSFQ) Packet Scheduling Discipline. (Under the direction of
Professor Dr. George Rouskas).

In packet-switched networks, the scheduling algorithm implemented by the routers

must possess three important properties: fairness, to provide isolation among competing

flows and ensure that each flow receives its fair share of the link bandwidth; bounded delay, so

as to guarantee a bounded end-to-end delay to interactive applications; and low complexity,

so as to be possible to operate at wire speeds even for large number of flows. Although

many fair queuing disciplines have been proposed, the best among them have worst-case

time complexity of O(log n) for a link with n flows.

Tiered Service Fair Queuing (TSFQ), a new queuing discipline, has been proposed

to achieve packet sorting and virtual time computation in time that is independent of the

number of flows. TSFQ exploits two widely observed characteristics of the Internet, namely,

that service providers offer some type of tiered service with a small number of service levels,

and that a small number of packet sizes dominate. Consequently, TSFQ maps the competing

n flows to p service levels where p is a small constant, and uses a special queuing structure

that eliminates the need to sort most packets.

As part of this thesis work, we implement the WF2Q+ discipline and various TSFQ

variants in the Linux kernel as separate loadable modules, and we investigate their relative

performance over a small testbed. Our experimental results indicate that TSFQ closely

emulates previously proposed fair queuing disciplines.

The main conclusion of our work is that TSFQ is a viable packet scheduler that

can be used in networks with heavy traffic loads to achieve fairness in constant time.

Testbed Implementation and Performance Evaluation of the Tiered Service Fair
Queuing (TSFQ) Packet Scheduling Discipline

by
Shrikrishna Khare

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2008

APPROVED BY:

Dr. Rudra Dutta Dr. Injong Rhee

Dr. George Rouskas
Chair of Advisory Committee

ii

BIOGRAPHY

Shrikrishna Khare was born on June 26, 1983. He received Bachelor of Engineering in

Computer Engineering from University of Pune in July, 2004. Later, he worked as a Member

of Technical Staff in Persistent Systems, Pune, India for 2 years. With the defense of this

thesis, he will receive Master of Science in Computer Science from North Carolina State

University in May, 2008.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Rouskas, without his support, encouragement and

timely guidance this would have never been possible. I would also like to thank Dr. Dutta

and Dr. Rhee for serving on my thesis committee. I would like to acknowledge National

Science Foundation for supporting this research under grant CNS-0434975.

I would also like to thank my parents and my sister, Shruti, for shaping me into the indi-

vidual that I am today.

iv

TABLE OF CONTENTS

LIST OF TABLES. vi

LIST OF FIGURES . vii

1 Introduction . 1
1.1 Packet Scheduling . 1
1.2 Organization of Thesis . 2

2 Queuing disciplines . 3
2.1 Fundamentals of Queuing disciplines . 3

2.1.1 The law of conservation . 3
2.1.2 Desired properties of a scheduler . 3
2.1.3 Max-min weighted fair share allocation 4
2.1.4 Generalized process sharing (GPS) 4

2.2 Round robin emulating GPS . 5
2.3 Fair Queuing . 5

2.3.1 WFQ . 5
2.3.2 Concept of Worst-Case Fair Index (WFI) 6
2.3.3 WF2Q emulation of GPS . 7
2.3.4 WF2Q+ . 8
2.3.5 A note on Virtual time . 9

2.4 Tiered Service Fair Queuing (TSFQ) . 9
2.4.1 TSFQ for fixed packet sizes (TSFQ-F) 10
2.4.2 Modified TSFQ for fixed packet sizes (TSF2Q-F) 12
2.4.3 TSFQ for variable packet sizes (TSFQ-V) 13
2.4.4 Modified TSFQ for variable packet sizes (TSF2Q-V) 15

3 Linux Implementation . 16
3.1 Queuing Disciplines in Linux . 16
3.2 Configuring queuing disciplines . 20

3.2.1 Associating weights . 20
3.2.2 RTNETLINK Sockets . 21
3.2.3 Steps involved in configuring queuing discipline 22

3.3 Organization of tc code . 24

4 Specific Requirements . 26
4.1 Configuring WF2Q+ . 26
4.2 Configuring TSFQ variants . 27

v

5 Design and Implementation . 29
5.1 User Perspective . 29
5.2 System (Kernel) Perspective . 30

5.2.1 Per flow queues: Queues from FIFO implementation 30
5.2.2 Support to look up Queue head: Peek functionality 31
5.2.3 WF2Q+ . 32
5.2.4 TSFQ-F . 33
5.2.5 TSF2Q-F . 35
5.2.6 TSFQ-V . 37
5.2.7 TSF2Q-V . 38

6 Numerical Results . 40

7 Summary and Future Work . 52
7.1 Summary . 52
7.2 Future Work . 52

Bibliography . 53

Appendices . 54
Appendix A. Experimental Setup . 55
Appendix B. Abbreviations . 59

vi

LIST OF TABLES

Table 3.1 Table iproute/tc design . 25

vii

LIST OF FIGURES

Figure 2.1 TSFQ for fixed packet size (TSFQ-F) . 10

Figure 2.2 Modified TSFQ fixed packet size (TSF2Q-F) . 12

Figure 2.3 TSFQ variable packet size (TSFQ-V) . 14

Figure 3.1 Packet forwarding and sending . 16

Figure 3.2 Applications communicating over network. 17

Figure 3.3 Kernel Networking Stack. 20

Figure 3.4 RTNETLINK sockets . 22

Figure 3.5 Configuring Queuing Disciplines . 23

Figure 3.6 iproute/tc design . 25

Figure 5.1 Qdisc creation using iproute/tc . 30

Figure 5.2 Circular queue for ineligible packets . 36

Figure 6.1 Testbed setup . 40

Figure 6.2 Throughput WF2Q+ - Variable sized packets - 2 Flows . 42

Figure 6.3 Throughput WF2Q+ - Variable sized packets - 3 Flows . 42

Figure 6.4 Throughput WF2Q+ - Fixed sized packets - 4 Flows - Scenario I 43

Figure 6.5 Throughput WF2Q+ - Variable sized packets - 4 Flows - Scenario I 43

Figure 6.6 Throughput WF2Q+ - Fixed sized packets - 4 Flows - Scenario II 44

Figure 6.7 Throughput WF2Q+ - Variable sized packets - 4 Flows - Scenario II 44

Figure 6.8 Throughput WF2Q+ - Variable sized packets - 22 Flows - Continuous run . 45

Figure 6.9 Throughput WF2Q+ - Variable sized packets - 22 Flows - Flow 1 and 2
terminated after 10 sec . 45

viii

Figure 6.10 Throughput WF2Q+ - Variable sized packets - 32 Flows - Continuous run 46

Figure 6.11 Throughput TSFQ-F - Fixed sized packets - 4 Flows - Scenario I 46

Figure 6.12 Throughput TSFQ-F - Fixed sized packets - 4 Flows - Scenario II 47

Figure 6.13 Throughput TSF2Q-F - Fixed sized packets - 4 Flows - Scenario I 47

Figure 6.14 Throughput TSFQ-V - Variable sized packets - 4 Flows - Scenario I 48

Figure 6.15 Throughput TSFQ-V - Variable sized packets - 4 Flows - Scenario II. 48

Figure 6.16 Throughput TSFQ-V - Variable sized packets - 32 Flows - Continuous run 49

Figure 6.17 Throughput TSF2Q-V - Variable sized packets - 4 Flows - Scenario I 49

Figure 6.18 Throughput TSF2Q-V - Variable sized packets - 4 Flows - Scenario II 50

Figure 6.19 Throughput TSF2Q-V - Variable sized packets - 32 Flows - Continuous run 50

Figure 6.20 Throughput TSF2Q-V - Variable sized packets - 32 Flows - Continuous run
- Differnt periods . 51

1

Chapter 1

Introduction

1.1 Packet Scheduling

Multiple contenders vying for the same resource warrant some mechanism to re-

solve the resulting conflict. In the context of networking, we typically have a large number

of flows competing with each other to go out over a single network interface card. Every

time the output interface is ready to a push new packet over the network, we need to decide

which flow gets service next. Thus, every multiplexed resource needs scheduling (provided

the statistical fluctuations in traffic result in queuing at multiplexing point).

The choice of service order has direct bearing on the amount of delay incurred by

a particular request. Also, if we run out of buffer space, then we need to decide a flow from

which to drop a packet. Thus, choice of scheduling disciplines directly affects both fairness

(important for best-effort flows) and performance guarantees (important for performance

critical applications).

Packet schedulers can be classified into two types:

Work conserving schedulers: In these schedulers, the link is never idle when there are

one or more packets waiting for service.

Non-work conserving schedulers: In these schedulers, the link may be idle even if it

has packets to serve. One important reason for delaying the service is to reduce delay jitter.

Few packet scheduling schemes like Weighted Fair Queuing (WFQ) and its vari-

ants provide good fairness among flows and QoS guarantees, but have relatively high time

complexity O(log n), where n is number of contending flows in the system. Other packet

scheduling techniques like Weighted Round Robin (WRR) have O(1) complexity, but gen-

2

erally do not have good fairness or bounded delay properties.

As part of this thesis work, we have implemented a new queuing discipline: Tiered

Service Fair Queuing [9] in Linux kernel and compared its performance with existing queuing

disciplines. TSFQ aims at providing good fairness among flows and QoS guarantees at O(1)

time complexity.

1.2 Organization of Thesis

We begin by briefly explaining basic principles in scheduling. Section 2 describes

Fair Queuing algorithms. It follows with description of Tiered Service Fair Queuing and its

variants. In this section we define the technique and analyze its time complexity. Section

3 describes design of network stack in the Linux kernel with specific emphasis on Queuing

disciplines and the role they play in kernel code.

We formally present Tiered Service Fair Queuing algorithms and its variants along

with its design constructs as implemented by our work in Section 5. TSFQ internally uses

the WF2Q+ formula for virtual time computation. This section explains that design in

detail as well.

Section 6 analyzes the performance of the implementation. We summarize our

work in Section 7 and provide directions for future research. Appendix A provides detailed

steps that should be undertaken in order to install and configure a Linux box to test our

code and observe performance.

3

Chapter 2

Queuing disciplines

2.1 Fundamentals of Queuing disciplines

2.1.1 The law of conservation

The sum of the mean queuing delays received by the set of multiplexed connec-

tions weighted by their share of the link’s load, is independent of the scheduling discipline.

In other words, a scheduling discipline can reduce a particular connection’s mean delay,

compared with FCFS, only at the expense of another connection. The sum of delays with

the FCFS scheduling is a tight lower bound whether or not the server is work conserving.

More formally [10], we have that:

N∑

i=1

ρiqi = Constant (2.1)

where,

λi : mean rate

xi : service rate

qi : mean waiting time at scheduler time

ρi = λixi

2.1.2 Desired properties of a scheduler

A packet scheduler should have following properties [8]:

4

• Since the schedulers are used in high speed networks, they should have low operational

time complexity, preferably O(1).

• The scheduler should maintain delay bounds for guaranteed-service applications.

• The scheduler must provide fairness among flows competing for the shared link (i.e.

max-min share allocation as explained in Section 2.1.3).

2.1.3 Max-min weighted fair share allocation

Amongst the competing flows, some might demand larger share than others. We

associate weights with flows to reflect their relative resource share. To achieve max-min

fairness, the allocation should be done based on following rules:

• Resources are allocated in order of increasing demand, normalized by weight

• No source gets a resource larger than its demand

• Sources with unsatisfied demands get resource shares in proportion to their weights.

2.1.4 Generalized process sharing (GPS)

GPS is an ideal scheduling discipline which is defined as follows:

• Each connection to be multiplexed has a separate logical queue.

• GPS visits each non-empty queue in turn

• It serves an infinitesimally small amount of data every time it visits a queue.

GPS, by definition, creates max-min fair allocation. If a particular flow is idle

for a while, then, then the excess bandwidth gets distributed amongst backlogged flows in

proportion to their weights.

More formally, a GPS server serving N sessions is characterized by N positive real

numbers φ1, φ2 ... φN . The server operates at fixed rate r and is work-conserving. Let

Wi(t1, t2) be the amount of session i traffic served in the interval [t1, t2]. Then, a GPS server

is defined as one for which

Wi(t1, t2)
Wj(t1, t2)

=
φi

φj
; j = 1, 2, ..., N (2.2)

5

holds for any session i that is backlogged throughout the interval [t1, t2].

GPS makes an assumption that bit by bit service is possible. In practice, however,

information comes in the form of packets and network cards are equipped to deal with

packets only.

2.2 Round robin emulating GPS

Round robin (RR) [11] visits each backlogged flow in turn and services the packet

at the head of its queue. RR reasonably approximates GPS when all connections have equal

weights and when all packets have same size. If flows have different weights, each flow is

serviced in turn and in proportion to its weight. This is called as weighted RR (WRR).

However, for connections with different mean packet sizes, to serve the connection

based on weights, we need to divide weights by mean packet sizes and normalize before

deciding how many packets of a particular connection should be served in one round.

The difficulty in emulating GPS correctly is that WRR should know a source’s

mean packet size in advance. In practice, however, it may not be possible to predict the

packet sizes as they may depend on many factors, e.g., the application, network interface,

etc. Another serious flaw with this emulation is that WRR is fair only over ‘time scales

longer than a round time’. At shorter time scales, some connections may get a service share

larger than others.

Thus, if a connection has a small weight or the number of connections is very

large, using WRR may lead to long periods of unfairness (thereby eventually defeating the

purpose of scheduling discipline).

2.3 Fair Queuing

2.3.1 WFQ

Weighted Fair Queuing schedules the packets in the order of increasing departure

times had those been scheduled in GPS. However, this would make the scheduler non work

conserving. To avoid this, when WFQ has to pick a packet for scheduling, it picks the first

packet that would leave in the corresponding GPS system provided no additional packets

were to arrive after that time [6].

6

As observed in [5], the relative finish order of all packets that are in the system at

time t is independent of any packet arrivals to the system after time t. That is, for any two

packets p and p′ at time t in a GPS system, if p finishes service before p′, assuming there

are no arrivals after time t, p will finish service before p′ for any pattern of arrivals after

time t.

Thus, we can do away with actual time computation. We only need to maintain

relative GPS finish ordering for packets in WFQ. WFQ defines a virtual time function V (t)

to track the progress of GPS [4]. It is defined as:

∂V (t + τ)
∂τ

=
1

Σi∈B(t)φi
(2.3)

For each arriving packet, the virtual start and virtual finish time is computed as:

Sk
i = max{F k−1

i , V (ak
i)} (2.4)

F k
i = Sk

i +
Lk

i

φi
(2.5)

Where,

φi : Weight of session i

B(t) : Set of sessions that are backlogged at time t

Sk
i : Virtual start time of kth packet of session i

F k
i : Virtual finish time of kth packet of session i

ak
i : Arrival time of the kth packet of session i

V (ak
i) : Virtual time at the instant of packet arrival

At any point in time, WFQ picks the packet with the minimum virtual finish time.

This policy is referred as ‘Smallest virtual finish time first (SFF)’. The virtual finish time of

a packet needs to be computed only when the packet arrives and it need not be recomputed

even if the set of backlogged sessions changes in the future.

A WFQ implementation using a priority queue data structure would have O(log n)

time complexity, where n is the number of flows.

2.3.2 Concept of Worst-Case Fair Index (WFI)

In [6], Bennett and Zhang define a measure to assess how good a particular queuing

disciple is in comparison with another. A service discipline s is called worst-case fair for

7

session i if for any time τ , the delay of a packet arriving at t is bounded as:

dk
i,s < ak

i +
Qi,s(ak

i)
ri

+ Ci,s∀i, k (2.6)

Where,

ri : throughput guarantee to session i

Qi,s(ak
i): queue size of session i at time ak

i

Ci,s : constant independent of queues of other competing sessions

A service discipline is called worst-case fair if it is worst-case fair for all sessions.

2.3.3 WF2Q emulation of GPS

In [3], Parekh showed that a packet in the WFQ system would not lag behind

the corresponding GPS system by more than the time required for transmission of one

maximum sized packet.

dk
i,WFQ − dk

i,GPS ≤
Lmax

r
(2.7)

Where,

dk
i,WFQ : Time at which kth packet of session i departs from WFQ system

dk
i,GPS : Time at which kth packet of session i departs from GPS system

Lmax: Maximum size of the packet

r : link speed

However, Benett and Zhang showed that while this is true, WFQ might indeed be

far ahead of corresponding GPS system in terms of the number of bits served for a session

[6].

In the previous section we noted that in order to be work conserving, WFQ picks

the next packet to schedule as if no other packet is going to arrive to the system in future.

Thus, if the next packet to depart from GPS has not yet arrived, WFQ would pick a packet

from some other session (say session i) for processing. Session i would thus go ahead of the

corresponding GPS system. The amount by which the service of a session is ahead of the

corresponding GPS system can become arbitrarily large. However, it should be noted that

in the long run, the service provided by WFQ and GPS for a session would be same. The

session that is far ahead currently would receive less service at some future point in time to

compensate.

8

To avoid an individual session running far ahead, unlike WFQ, WF2Q does not

pick the next packet to schedule from all the available packets. The WF2Q server considers

only those packets whose virtual start time is less than or equal to the current virtual time

and picks the packet with the minimum finish time from them. This policy is referred as

‘Smallest eligible virtual finish time first (SEFF)’ [5]. The virtual time function computa-

tion is same as WFQ.

2.3.4 WF2Q+

As a result of SEFF policy, WF2Q provides the smallest WFI amongst fair queuing

algorithms. However, since the WF2Q virtual function computation is the same as for WFQ,

the worst-case time complexity is still O(n) for n flows. In [5], Bennett and Zhang proposed

a new virtual time function:

VWF 2Q+(t + τ) = max{VWF 2Q+(t) + W (t, t + τ), min
i∈B(t)

{Shi(t)
i }} (2.8)

Where,

W (t, t + τ): Amount of service provided by server during time [t, t + τ]

B(t) : Set of sessions that are backlogged at t

hi(t): Sequence number of packet at the head of session i’s queue

S
hi(t)
i : Virtual start time of that packet

With this new definition, the virtual start and finish time for packets need to be

computed only for the head-of-line packet of the flow queue and not for every packet. The

computation is done as follows:

Si =

Fi if Qi(ak
i−) 6= 0

max{Fi, V (ak
i)}, if Qi(ak

i−) = 0
(2.9)

Fi = Si +
Lk

i

ri
(2.10)

Where

Qi(ak
i−): queue size of session i just before time ak

i

Si : virtual start time of head-of-line packet of queue

Fi : virtual finish time of head-of-line of packet queue

9

2.3.5 A note on Virtual time

The term ‘Virtual time’ is actually a misnomer. V (t) represents the normalized

fair amount of service that all backlogged sessions should receive by time t in GPS system.

Thus, the virtual start time of packet of certain session i: S(i, t) represents the

amount of service the session should have received at the beginning of servicing the packet.

Similarly, the virtual finish time of a packet of certain session i: F (i, t) represents amount

of service the session should have received on completion of servicing the packet.

When the WFQ scheduler picks the packet of some session i which has minimum

virtual start time, it is actually picking the session that has received the least amount of

service.

Moreover, WF2Q considers only the sessions with virtual start time ≤ current

virtual time. Thus, WF2Q is picking from sessions which have received lesser service till

that time than they would have in the corresponding GPS system.

While fair queuing guarantees minimum bandwidth for each backlogged session,

the excess bandwidth of flows that are not backlogged is distributed amongst backlogged

flows in proportion of their weights. Thus, when a new session is backlogged, the amount

of bandwidth received by previously backlogged sessions decreases thereby increasing their

finish time on a real time scale. Similarly, when a session becomes inactive, the finish

time of other sessions decreases on a real time scale. However, as noted in Section 2.3.1,

we are only interested in relative ordering. The rate of change of virtual time (amount

of service received) increases as the number of inactive sessions increases and decreases as

more sessions are backlogged.

2.4 Tiered Service Fair Queuing (TSFQ)

In this section, we describe a new fair queuing discipline, TSFQ, which provides

good fairness at constant time. TSFQ exploits two widely observed characteristics of the

Internet, namely, that service provides offer some type of tiered service with a small number

of service levels, and that a small number of packet sizes dominate.

Traffic quantization can be defined as the process of mapping each flow in the

network to one of the small set of service levels (tiers), in such a way that the Quality

of Service (QoS) is at least as good as that requested by the flow is guaranteed. Traffic

10

quantization trades off small amount of system resources for simplicity in the core network

functions.

For example, in a continuous-rate network, one may request a bandwidth of 99.92

Kbps while another 99.98 Kbps. In this case, network provider faces a difficult task of

distinguishing these two rates and enforcing them reliably. A quantized network might

assign both the flows to the next higher level of bandwidth, say 100 Kbps. Network operator

then only needs to supply policing mechanisms for a small set of rates, independent of the

number of flows.

We begin by describing TSFQ for fixed sized packets. Later, we remove this

assumption and consider more realistic traffic with variable packet sizes.

2.4.1 TSFQ for fixed packet sizes (TSFQ-F)

Figure 2.1: TSFQ for fixed packet size (TSFQ-F)

This version of Tiered Service Fair Queuing assumes fixed size packets. Similar to

Weighted Fair Queuing, a separate FIFO queue is maintained for each of the flows in the

system. These are referred as flow queues. A newly arriving packet for a flow is inserted

11

at the tail of the flow queue. Thus, packets within a queue are sorted in the order of their

arrival times. The scheduler defines a number of service levels (say p) and it maintains one

FIFO queue for each of the service levels as well. It is depicted in Figure 2.1.

A certain number of flow queues are mapped to service level queue based on some

preconfigured criteria. The FIFO queue at service level l contains the head-of-line packets

of all the backlogged flows that are mapped to this service level.

At each dequeue operation, the scheduler looks at the head-of-line packets of each

of the service level queues and picks the one with the smallest virtual finish time for process-

ing. Let us say that the scheduler dequeued packet of some flow i from some service level

l. The next packet in flow queue i (if present), should be processed only after processing

all the packets currently in a service level l FIFO queue. Thus, this new packet is added at

the end of the service level queue l.

We need to consider two operations while computing time complexity viz. dequeue

operation and virtual time computation. The dequeue operation involves picking a packet

from flow with the minimum virtual finish time. Since packets in a service level are sorted

by their virtual finish times, we need to compare the finish times of only the packets at

the head of service level queues. Comparison of virtual finish times of p packets takes time

O(1) given that for a particular system p is small constant.

Virtual time computation requires picking the minimum virtual start time amongst

all the backlogged flows. Owing to the fixed packet size, the packets in a service level are

implicitly sorted according to their virtual start times as well. Thus, finding the minimum

virtual start time also involves comparison of virtual start times of p packets which takes

O(1) time for small constant p.

Consider a system where four flows f1, f2, f3, f4 are mapped to the same service

level. Let us say only the first 3 flows are backlogged at a given time and the system picks a

packet from flow f1 first. According to the algorithm described above, the next packet of f1

would then make it to service level queue right behind flow f2 and f3 head-of-line packets.

If flow f4 becomes active while we are processing flow f2 or flow f3 packet, its packet would

be queued behind the f1 packet. However, a true emulation of GPS should service this

packet before flow f1 packet. The next section modifies this algorithm to circumvent this

problem.

12

2.4.2 Modified TSFQ for fixed packet sizes (TSF2Q-F)

The behavior of servicing flow f1 packet before flow f4 packet from the example in

the previous section, owes to the fact that we admit the flow f1 packet to the service level

FIFO much sooner than we should. Thus, the problem can be solved by inserting a packet

into service level FIFO queue only when the current virtual time is equal to the virtual

start time of the packet.

Thus, the new head-of-line packet of a flow queue can be added to the service level

queue only when current virtual time becomes greater than or equal to the virtual finish

time of the previous head-of-line packet of the flow queue i.e. F k−1
i .

In addition to the service level queue, this technique maintains another queue,

called the GPS queue, for each service level as shown in Figure 2.2. The GPS queue

contains a (flowid, virtual finish time) tuple for each active flow in the scheduler. At any

point in time when the GPS queue is non-empty, we have an event scheduled to trigger off

at the virtual finish time of the packet at the head of the GPS queue.

Consider a scenario when a packet is at the head of a flow queue while that flow

Figure 2.2: Modified TSFQ fixed packet size (TSF2Q-F)

13

does not have any of its packet in the service level queue. This can happen in two cases,

viz.:

• When a packet arrival causes the new flow to become active. In this case, if the virtual

start time of this new packet is ≤ current virtual time, the packet directly makes it

to service level queue. However, if the virtual start time > current virtual time, we

simply enqueue this packet in the flow queue. This packet would make it to service

level queue when the corresponding event in the GPS queue triggers off.

• If a packet departs from a flow which was already active, we do not add the new flow

queue head to the service level queue immediately. Instead, we wait for the trigger to

go off. When the trigger goes off, we check the flow queue corresponding to the flow

id of the current GPS head-of-line. If the flow queue is non empty, we add the tuple

(flow id, virtual finish time of next packet) to the GPS queue. Also, the next packet

in the flow queue makes it to the service level queue at this time.

Thus, the packets are inserted only when they are eligible for service i.e. at their virtual

start time. The time complexity of this approach is the same as before i.e. O(1).

2.4.3 TSFQ for variable packet sizes (TSFQ-V)

Under real network traffic conditions, packets typically have different sizes. The

technique described in the previous section relies on implicit ordering of packets in the

service level queue only because the packets are of the same size. However, with variable

packet sizes, this need not be the case.

Consider a system with two flows i and j having equal weights mapped to the same

service level. Also, consider that a packet with size sizei belonging to flow i is enqueued

in the service level queue. Another packet belonging to flow j with size sizej such that

sizej < sizei arrives at the service level queue. In the GPS system, this packet belonging

to flow j may exit the system before the packet of flow i. Thus, unlike in the fixed packet

size case, we cannot simply enqueue the packets in the service queue in the order of their

arrival, but we need to insert them in the service queue according to their finish time.

However, we can exploit the fact that in the Internet, certain packet sizes dominate

[7]. As shown in Figure 2.3, we maintain a separate FIFO for each of the flows in the system.

As before, a certain number of flow queues are mapped to a service level based on some

14

Figure 2.3: TSFQ variable packet size (TSFQ-V)

preconfigured criteria. Instead of one service level queue, we maintain k different service

level queues for each service level. Each of the service level queues correspond to one of

the common packet sizes like 40, 576, 1500 bytes etc. For the remaining packet sizes we

designate queues as for example, one service level queue for packet sizes in the range 41-575

bytes, another for size 577-1499 bytes and so on.

When a packet at the head of the flow queue becomes eligible to make it to the

service level queue, we check its size and make a decision as to which service level queue it

needs to go. If it is one of the fixed packet size service level queues, we directly enqueue

since it is implicitly sorted according to its virtual finish time.

However, if the packet belongs to one of the variable size service level queues, then

we need to insert the packet at the appropriate location as explained before. Since more

than 90% of the Internet traffic consists of packets with a common size, no sorting operation

is necessary for the large majority of packets. The sorting operation takes place infrequently

(less than 10% of the time) and involves only relatively short queues, since less than 10% of

the packets are spread over several queues at l different service levels. The time complexity

of sorting operations depends only on the network load and the ratio of packets with non

15

common size and is independent of the number of n flows.

2.4.4 Modified TSFQ for variable packet sizes (TSF2Q-V)

Similar to TSFQ-F and TSF2Q-F we define two variants of TSFQ for variable size.

The variant where we directly admit a flow queue head-of-line packet to service level queue

when packet belonging to that flow departs the system is termed TSFQ-V. The variant

which delays insertion of flow queue head-of-line packet till it becomes eligible is called

TSF2Q-V. Like TSF2Q-F, TSF2Q-V also requires to maintain one GPS queue for each of

the service levels.

16

Chapter 3

Linux Implementation

3.1 Queuing Disciplines in Linux

Linux implements the most commonly used networking protocols in the Internet

viz. TCP/IP protocol suite. This section presents an overview of the network stack design

in Linux Kernel 2.6.24.6 [4]. However, the design artifacts discussed here do not vary

significantly across the 2.6.x.x series of Linux Kernels. At the time of writing, the latest

Kernel available was 2.6.26.2 [4].

This subsection presents a birds-eye-view of the design. Succeeding sections take

a closer look at the components, specifically focusing on the components that affect the

design of new queuing discipline.

Figure 3.1: Packet forwarding and sending

17

Figure 3.2: Applications communicating over network

Figure 3.1 depicts where Queuing disciplines stand in the context of networking

software at an end host.

An incoming packet is subjected to a series of rules before being fed to the IP

demultiplexer (IP DEMUX). The packet could be destined to the host itself or it could be

delivered for forwarding. Also, an end host itself might generate packets for sending out.

All the packets that are to be sent out are queued at the output interface. When

we have competing flows vying for the same output interface card we need some way to

resolve the conflict. That is where the scheduling discipline comes into the picture.

Let us refer to Figure 3.2. When an application running in user space wants

to transmit data across the network, it uses the underlying transport and network layer

mechanisms implemented in kernel. A set of data structures (struct socket, struct sock

etc.) is allocated for each connection during connection setup. These data structures also

hold function pointers to respective socket operation routines.

Data is transmitted in the form of packets. As a packet travels down the stack,

transport and network layer protocols add their own headers. If more than one application

is transmitting data simultaneously, then packets from different applications reach the out-

going interface simultaneously. When contention occurs, the criteria used to decide which

packet gets service next effectively decides the amount of bandwidth share a particular

18

application’s data flow receives.

An important aspect to note is that the kernel needs to make this decision only

when the competing packets are absolutely ready to ship out, i.e., all protocol specific

operations are already carried out. Thus, queuing disciplines, by definition, are not part

of the transport/network layer. Their implementation can be viewed as an independent

sublayer below the network layer. By default, each network interface in Linux is associated

with a First-In-First-Out (FIFO) queuing discipline.

The Linux kernel source code can be broadly broken down into two parts viz. code

that implements basic operating system functionality and code that is part of the operating

system but loaded only on demand. The former constitutes the kernel’s network stack. This

section looks at each of the components in greater detail.

An application network programmer has a number of address families, transport

layer protocols, network layer protocols and options available at his disposal. Linux imple-

ments an abstraction, called sockets, to allow easy interface for the network programmer.

Let us consider an example to gain some insight into the Linux Kernel design.

Consider some application (say application 1) which wants to use AF INET address family

and communicate using UDP over IP. Consider another application (say application 2)

which also wants AF INET address family but wants to communicate using TCP over IP.

Bear in mind that routines specific to address families (like AF INET), transport protocols

(like TCP, UDP) or network protocol (like IP) are separate layers and thus are implemented

as separate logical entities in the code.

In terms of socket operations, supporting a particular data flow involves operations

such as initializing the socket at the time of creation, data send and receive, and finally

releasing the resources.

One way to implement this is as follows: every time a transport layer protocol

is to be invoked from an address family specific routine, one can choose which transport

layer protocol routine to invoke based on some connection identifier. Such a design would

be a set of if-else statements (or switch-cases) to pick the routine corresponding to desired

transport protocol. Note that this action needs to be carried out every time such a function

call is to be made, i.e., not just at the socket initialization and release but also for each of

the data packet that is beings sent out, thereby making it expensive.

Contrast this with another design approach: Let us say an address family specific

routine does not actually choose and invoke a transport layer protocol function but it just

19

invokes a function pointed by a generic transport layer protocol function pointer. Now

all one needs to do is to load this function pointer with the corresponding transport layer

function at the time of socket initialization. This would avoid the sets of if-elses described

in the first approach and also make the code cleaner and easier to understand. This is the

approach employed by the kernel.

More specifically, a socket function call of the socket API returns a unique descrip-

tor (usually referred sockfd). This descriptor maps to a unique structure object within kernel

code of data type struct socket. One of the members of struct socket is struct proto ops,

which holds function pointers for every socket operation that a user can perform: bind,

connect, listen, accept, sendmsg, recvmsg, etc. These function pointers are set to point to

desired functions when a socket is created.

Figure 3.3 pictorially represents this concept. For simplicity, we depict the stack

from the perspective of a single data flow. Usage of function pointers at each of the levels

in Figure 3.3 means that an application programmer can choose any valid combination of

(address specific family, transport protocol and network protocol) at the time of socket

creation. Since a queuing discipline defines how various such connections interact with each

other in terms of bandwidth, this choice of queuing discipline is not available to application

programmer requesting connection. A network administrator can configure which queuing

discipline to use and what amount of bandwidth to dedicate to a particular connection.

The next section looks at this aspect in greater detail.

As a side note, we would like to observe that this operation is inherently poly-

morphic since the functions should be called on the basis of the run time data type of

the invoker. The programming language C achieves this polymorphism with the help of

function pointers.

As observed in the previous section, most of the network stack functionality is

implemented as loadable kernel modules. These modules are loaded only when they are

needed for the first time. When a connection is set up (3-way handshake for TCP), the

kernel loads all the relevant modules. Each of these modules has an init function which is

invoked at this time. This function sets up ‘function pointers’ to point to the set of functions

this particular connection would be needing. This is all done at run time depending on what

parameters the user program specified while invoking the Socket API for connection setup.

20

Figure 3.3: Kernel Networking Stack

3.2 Configuring queuing disciplines

3.2.1 Associating weights

Before we delve further into the details, it is imperative to define what constitutes

a flow. In our context, simply put, a flow is a stream of packets that we would want to

21

guarantee certain bandwidth. The queuing discipline receives packets from various applica-

tions running on that end host. One way to distinguish packets belonging to one flow from

another is on the basis of the port number they are destined to. There could be several other

ways to do that, e.g., source port, transport layer protocol being used, or any combination

of these, etc.

This is a policy decision that a network administrator would want to take depend-

ing on its subscribers, their privileges, the nature of data being carried and its bandwidth

requirement. To provide this flexibility to the network administrator, we must have a user

level interface that allows us to configure the criteria for what constitutes a flow as well

as what bandwidth to assign to trains of packets classified into that flow. Since ensuring

that the specified bandwidth requirement is met depends on queuing discipline, we need a

mechanism that allows us to directly talk with queuing discipline from user level code.

One way to configure a bandwidth for a particular flow is specifying an actual

value while defining the flow, e.g., defining something like 10 Mbps for flow 1, 20 Mbps for

flow 2, and so on. Such an approach would require prior knowledge of the capacity of the

outgoing interface. Alternatively, we can normalize the associated bandwidth and specify

the percentage of available bandwidth that a particular flow should use e.g. 10% for flow

1, 20% for flow 2, and so on. We prefer this latter approach.

3.2.2 RTNETLINK Sockets

Note that this configuration cannot be done at the time of conventional socket

creation because, though we want to associate bandwidth to an individual flow, the queuing

discipline configuration is applicable to all the flows in the system.

One commonly used way to directly manipulate parameters within the kernel is to

use the ioctl (defined in sys/ioctl.h) system call. However, queuing discipline configuration

is achieved using a different technique. A special type of socket is created to carry out this

configuration. NETLINK [12] provides a facility for user applications to directly commu-

nicate with kernel modules, query their status, configure and effectively control them. It is

an extension of the standard socket implementation as shown in Figure 3.4.

RTNETLINK is implemented as a different address family (socket system call with

address family AF NETLINK). One still has to go through the usual process of opening a

socket, binding the socket to a local address, sending a message to an end point, receiving

22

Figure 3.4: RTNETLINK sockets

a message from another end point and closing the socket.

Alexey Kuznetsov et al [2] developed a software named iproute which contains

tools for manipulating routing tables, tunnels etc. (called ip) and a traffic control tool (tc).

The tc command opens an RTNETLINK socket to communicate and configure queuing dis-

ciplines. The tool comes packaged with any standard Linux distribution (typically present

in /sbin/ip, /sbin/tc) or else can be built from sources available at [2].

Figure 3.5 combines the ideas we discussed in the last couple of sections. It shows

two separate lines of control. Packets traverse down the stack through socket API, address

family specific routines, TCP and then IP. While configuring queuing discipline, classifier

and related attributes, we can bypass this usual hierarchy with the help of tc command

with a socket of type AF NETLINK.

3.2.3 Steps involved in configuring queuing discipline

With this perspective in mind, let us provide more details about the iproute utility.

Iproute contains several networking utility functions like traffic control (tc), policy routing,

NAT capabilities, packet scheduling, packet filtering etc. [3].

The tc command operates on an individual network interface. We can associate a

specific queuing discipline (usually referred to as qdisc) with an interface using this com-

mand. A sample command may look like

tc qdisc add dev eth0 root handle 1:0 wf2q+

Every traffic control element is internally recognized by ’major number: minor

23

Figure 3.5: Configuring Queuing Disciplines

number’. The tuple is often called within the code. In the aforementioned example, major

number is 1 while minor number is 0.

Once we associate a queuing discipline (WF2Q+ in our example below) with an

interface say eth0, we would further like to associate bandwidths with different flows going

out of eth0. We first define a parent class and then define flows within it. This can be

achieved by commands:

tc class add dev eth0 parent 1:0 classid 1:1 wf2q+

tc class add dev eth0 parent 1:1 classid 1:3 wf2q+ weight 90

tc class add dev eth0 parent 1:1 classid 1:4 wf2q+ weight 10

Each flow is said to belong to a different class. Note that while the classes have

24

minor numbers 3 and 4, the major number remains same viz. 1.

The set of packets that are mapped to a particular flow can be further classified

and scheduled. By default they are scheduled according to FIFO.

Let us look at third option of tc now viz. tc filter. It allows a user to define what

constitutes a flow.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 7000 0xffff

flowid 1:3

This command picks any packet with destination port 7000 and applies identifier

flowid 1:3 to it. By previous tc class commands, flow with id 1:3 is supposed to have 90% of

bandwidth. Thus, the connection with destination port 7000 has assured bandwidth share

of 90%;

To summarize, configuration consists of the following steps

• Associate a queuing discipline with network output interface (tc qdisc).

• Define classes within qdisc. Associates identifiers, weight (tc class).

• Define rule which can classify given packet into defined class (tc filter).

Each of the tc command invocations prompt the tc implementation to open an

RTNETLINK dialog with the kernel. It then sends a command in the format (command-

type, parameters) using the same.

3.3 Organization of tc code

Figure 3.6 depicts the design of iproute/tc utility. As described above, a user can

issue various commands like add or delete Qdisc, add or delete class, add or delete filter

etc. RTNETLINK socket communication to kernel functionality is segregated in library

iproute/lib. Other iproute tools use this functionality as well.

While communicating this command to kernel using RTNETLINK socket, tc util-

ity sends an identifier specifying the command time. This identifier is mapped to the kernel

function performing the corresponding action. The association between identifier and cor-

responding kernel function is set up using rtnl register when the basic packet scheduler

module (i.e. FIFO) is loaded in kernel (this happens during booting itself).

25

Figure 3.6: iproute/tc design

For example, if the ‘tc qdisc add’ command is issued, the RTNETLINK message

sent by tc’s socket contains the command type ‘RTM NEWQDISC ’. This command in turn

is mapped to the kernel function tc modify qdisc. Table 3.1 presents the complete list for

iproute version 2-2.6.19-061214 running on Linux kernel 2.6.24.6.

Table 3.1: Table iproute/tc design
Command Command type Kernel function Operation
tc qdisc add RTM NEWQDISC tc modify qdisc Add new qdisc
tc qdisc del RTM DELQDISC tc get qdisc Delete qdisc
tc class add RTM NEWTCLASS tc ctl tclass Add new class
tc class del RTM DELTCLASS tc ctl tclass Delete class
tc filter add RTM NEWTFILTER tc ctl filter Add new filter
tc filter del RTM DELTFILTER tc ctl tfilter Delete filter

26

Chapter 4

Specific Requirements

4.1 Configuring WF2Q+

• An interface to associate the queuing discipline with the outgoing network interface

in question (eth0 in our example).

tc qdisc add dev eth0 root handle 1:0 wfq bandwidth 100Mbit avpkt 1000 cell 8

• A parent class, which is parent of every flow.

tc class add dev eth0 parent 1:0 classid 1:1 wfq bandwidth 100Mbit prio 8 allot 1514

cell 8 maxburst 20 avpkt 1000 bounded

• For WF2Q+, we define ‘tc class’ such that each class corresponds to a separate com-

peting flow. The following command defines a parent class which is associated with

the outgoing interface in question (eth0 in this example).

tc class add dev eth0 parent 1:1 classid 1:3 wfq bandwidth 100Mbit weight 90 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 1

tc class add dev eth0 parent 1:1 classid 1:4 wfq bandwidth 100Mbit weight 10 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 2

• We would want to service the packets mapped to particular flow using FIFO.

tc qdisc add dev eth0 parent 1:3 handle 30: pfifo # flow 1

tc qdisc add dev eth0 parent 1:4 handle 40: pfifo # flow 2

• Tell the classifier to filter the packet with certain destination port to be mapped to

27

specific class id. For example, the following configuration would map packet with

destination port 6000 to class 1:3 and 6001 to class 1:4.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6000 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6001 0xffff flowid

1:4

4.2 Configuring TSFQ variants

• An interface to associate the queuing discipline with the outgoing network interface

in question (eth0 in our example).

tc qdisc add dev eth0 root handle 1:0 tsfq bandwidth 100Mbit avpkt 1000 cell 8

• A parent class, which is parent of every flow.

tc class add dev eth0 parent 1:0 classid 1:1 tsfq bandwidth 100Mbit prio 8 allot 1514

cell 8 maxburst 20 avpkt 1000 bounded

• For TSFQ, we define ‘tc class’ such that each class corresponds to a separate service

level. Following command defines a parent class which is associated with the outgoing

interface in question (eth0 in this example).

tc class add dev eth0 parent 1:1 classid 1:3 tsfq bandwidth 100Mbit weight 90 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 1

tc class add dev eth0 parent 1:1 classid 1:4 tsfq bandwidth 100Mbit weight 10 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 2

• Quantization step: Tell the classifier to filter the packet with certain destination port

to be mapped to specific class id. For example, the following configuration would map

packets with destination port 6000 or 6001 to class 1:3 and 6002 and 6003 to class 1:4.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6000 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6001 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6002 0xffff flowid

1:4

28

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6003 0xffff flowid

1:4

We implement 4 variants of tsfq viz. tsfqv1, tsfqv3, tsfqvarv1, tsfqvarv3. The

desired TSFQ variant can be configured by replacing tsfq in syntax noted above with the

name of TSFQ variant. Succeeding sections explain these TSFQ variants.

29

Chapter 5

Design and Implementation

5.1 User Perspective

Figure 5.1 elaborates on the qdisc creation part from iproute/tc perspective. Class

and filter creation is done in a similar manner.

Tc qdisc modify looks up for the queuing discipline supplied by the tc qdisc add

command and refers to corresponding q <qdisc name>.c file. This is done dynamically.

POSIX provides an interface to dynamic linking loader with functions like dlopen, dlerr,

dlsym and dlclose (defined in header <dlfcn.h>)

Once the function pointer is dynamically loaded with the requested queuing dis-

ciplines pointer, it invokes the corresponding parsing routine to parse parameters. This

routine also carries out the validation. If this phase is successful, now we need to commu-

nicate this configuration to the kernel. This part of the code is broken down separately

into iproute/lib. [Note that apart from Traffic control (tc), iproute also performs other

useful tasks like managing routing tables, tunnels etc (ip). The functionality required to

communicate with the kernel is required by both and is thus segregated into a separate

directory.]

The two squares with thick bordering, viz. q wf2q+.c and q tsfq.c, represent code

that is part of our work. Once again, for brevity, we represent the queuing discipline file as

q tsfq.c. While in reality, we have one such file for each of the TSFQ variants viz. q tsfq-f.c

q tsf2q-f.c q tsfq-v.c q tsf2q-v.c. With the iproute/tc framework already in place, all this

code needs to do is to parse, validate and send parameters down to the kernel in a manner

exactly analogous to other queuing disciplines. Thus, we do not deal with it in greater

30

depth here.

5.2 System (Kernel) Perspective

Sections 5.2.2 and 5.2.1 deal with design issues that are common to implementation

of all the queuing disciplines. Subsection 5.2.3 onwards, we deal with design issues specific

to each of the queuing disciplines.

5.2.1 Per flow queues: Queues from FIFO implementation

WF2Q+ requires us to maintain one separate queue for each of the competing

flows, while TSFQ maintains individual queue for each flow as well as a separate queue for

each of the predefined service level.

Enqueuing for flow queues is done on packet arrival while dequeuing from flow

queues is governed by virtual time computation. However, not withstanding the criteria for

Figure 5.1: Qdisc creation using iproute/tc

31

committing these operations, we still expect a data structure with basic queue functionality.

The Linux kernel defines a data structure socket buffer as struct sk buff (defined

in source tree at include/linux/sk buff.h). It holds one pointer each for headers of each of

the layers. It also holds a data pointer. In essence, one sk buff instance has all the data that

is necessary for transmitting a packet. An sk buff instance pointer is in fact the currency

used by queuing disciplines to talk with external modules. Thus, a particular flow queue

needs to maintain a chain of sk buff pointers and provide enqueue and dequeue operations

on them.

As described before, the Linux kernel includes by default the FIFO queuing disci-

pline. Thus, we can reuse this functionality by making each of the WF2Q+ flow queue or

TSFQ flow/service level queue as the FIFO queue of the existing implementation. While

this is a cleaner implementation, it is also consistent with the hierarchical queuing discipline

philosophy. The FIFO scheduler code is implemented using struct Qdisc and functions to

perform operations on Qdisc (defined in include/net/sch generic.h).

5.2.2 Support to look up Queue head: Peek functionality

As described in Section 2.3.4, WF2Q+ computes the virtual time finish using

following formula:

Fi = Si +
Lk

i

ri
(5.1)

where Li is the length of the packet.

A packet can reach the head-of-line of a queue in two scenarios viz. when a newly

arriving packet finds its flow queue empty, or when a packet at head-of-line of a particular

flow queue departs and the immediately succeeding queued packet makes it to the head-

of-line of the queue. When the newly arriving packet makes it to head-of-line of queue

directly, we have a pointer to the packet’s sk buff structure and thus can easily Figure out

Li. However, when a previously queued packet makes it to the head-of-line of a queue, we

need a mechanism to find the length of the top of the queue without actually dequeuing

the packet. The existing FIFO implementation does not support this functionality. Thus,

we added that functionality to the kernel code.

Function prototype:

struct sk buff * (*peek)(struct Qdisc *dev);

The modifications to the FIFO interface have been italicized :

32

static struct Qdisc ops pfifo fast ops = {
.id = “pfifo fast”,

.enqueue = pfifo fast enqueue,

.dequeue = pfifo fast dequeue,

.peek = qdisc peek,

.

. };

Since this requires change in the FIFO implementation which is part of the kernel

boot image, this functionality is not available as a loadable module but requires rebuilding

Linux kernel.

5.2.3 WF2Q+

We maintain a separate FIFO for each flow. A flow, in our case, is characterized by

the destination port as configured using tc filter. When we receive a packet enqueue request,

we need to match the incoming packet against all the filter rules configured previously to

find a potential match. The classifier routine returns a pointer to the corresponding data

structure wfq class.

For each flow in the system there is a unique wfq class instance. This structure

holds the class identifier (an integer used to uniquely identify the flow), the weight corre-

sponding to that flow, a pointer to that flow’s FIFO, the virtual start and finish time of the

packet at the head-of-line of FIFO for that flow etc.

One such instance is generated for each tc class command. The weight field within

the class is loaded at the same time. First, the tc qdisc command loads this kernel module.

The module maintains a global variable for the current virtual time.

Algorithm 1 WF2Q+ Virtual time computation
min start time⇐ Minimum start time amongst packets at head of queues

delta⇐ Time elapsed since previous virtual time update

current virtual time = max{current virtual time + delta, min start time}

The virtual time computation algorithm used is shown in Algorithm 1. The rou-

tine that updates the virtual time after each enqueue/dequeue maintains a static variable

33

for the previous timestamp. The time difference between current and previous times-

tamp represents the amount of service done since the last virtual time update. We ob-

tain the current time using the psched get time function defined in the source tree at in-

clude/net/pkt sched.h

Algorithm 2 states the enqueue operation discussed before in algorithmic format.

Algorithm 2 WF2Q+ Enqueue(skb)
cl⇐ pointer to wfq class instance that this skb belongs to (return value of classifier)

flowid⇐ flow id of arriving packet skb

if flowid queue is empty then

Sflowid = max{Fflowid, current V T} ; Fflowid = Sflowid + skb−>len
cl−>weight

end if

Enqueue skb in cl→ fifo queue

Update Virtual time: Algorithm 1.

The dequeue operation involves choosing the flow with the minimum virtual finish

time. The virtual time is updated after dequeue operation as shown in algorithm 3.

Algorithm 3 WF2Q+ Dequeue
cl⇐pointer to wfq class instance of backlogged flow with minimum virtual finish time

skb⇐dequeued packet from cl→ fifo queue

if flowid queue is not empty then

new head skb⇐pointer to new head of flow queue

Sflowid = Fflowid ; Fflowid = Sflowid + new head skb−>len
cl−>weight

end if

Update Virtual time: Algorithm 1.

This functionality is available as a loadable module with name sch wf2q+.ko.

5.2.4 TSFQ-F

With Tiered Service Fair Queuing, we need to maintain a separate queue for each

flow as well as each service level. We define one instance of the data structure struct

tsfqf class to correspond to one service level. This structure holds the class identifier, the

weight corresponding to that service level, and an array of pointers to each of the flow

34

FIFOs mapped to this service level. We also need to maintain the virtual start and virtual

finish time for the packet at the head of the queue of each flow queue within the service

level. This is stored as an array within struct tsfqf class as well.

We perform the quantization step manually, i.e., while configuring filters using tc

filter if we want flows destined for port 6000 and port 7000 to be mapped to same service

level, then two tc filter commands must be issued with the same classid.

When an input packet arrives for enqueuing, the classifier routine runs through the

filter list and returns pointer to the corresponding service level instance of struct tsfqf class.

We look at the destination port and use it to index among the flow queue pointer array to

pick the flow queue the packet belongs to.

Since we can access the flow queues within a service level by indexing, we need not

carry the actual packet in the service level queue. The service level queue is implemented

as a sequence of index numbers that refer to flow queues. If a particular service level is

chosen for servicing, we dequeue from the service level queue to get an index. This index is

then used to perform a dequeue operation on the appropriate flow queue within that service

level.

In this TSFQ version, the head of flow queue directly makes it to service level if

no other packet of that flow is previously queued. We formally present it in Algorithm 4.

Algorithm 4 TSFQ-F Enqueue(skb)
cl⇐ pointer to tsfqf class instance that this skb belongs to (return value of classifier)

flowid⇐ flow id of arriving packet skb (used to index in flow queue array)

if flowid queue is empty then

Sflowid = max{Fflowid, current V T} ; Fflowid = Sflowid + skb−>len
cl−>weight

Enqueue in cl→ service level queue

end if

Enqueue skb in cl→ fifo queue[flowid]

Update Virtual time: Algorithm 1.

Though algorithm 4 refers to the same update virtual time algorithm as WF2Q+,

there is a difference in the way the minimum virtual start time of the backlogged sessions

is computed. While WF2Q+ needs to look at each flow, TSFQ-F needs to look at only

the head of the service level queues. For fixed sized packets, the service level queues are

implicitly sorted by minimum virtual start time as well.

35

Let us look at the dequeue operation now. We need to pick the service level with

the minimum virtual finish time. That gives us the index, which is used to dequeue packet

from appropriate flow queue of the chosen service level. If new packet now makes it to head

of the flow queue, we must compute virtual start and finish time for it. Also, this new

packet would be enqueued in service level queue. We state it formally in Algorithm 5.

Algorithm 5 TSFQ-F Dequeue
cl⇐pointer to tsfqf class instance service level with minimum virtual finish time

flowid⇐Index into the flow queues, points to flow queue to dequeue from

skb⇐dequeued packet from cl→ fifo queue[flowid]

if flowid queue is not empty then

new head skb⇐pointer to new head of flow queue

Sflowid = Fflowid ; Fflowid = Sflowid + new head skb−>len
cl−>weight

Enqueue in cl→ service level queue

end if

Update Virtual time: Algorithm 1.

This functionality is available as a loadable module with name sch tsfqv-f.ko.

5.2.5 TSF2Q-F

As explained in Section 2.4.2, we circumvent the defect in previous version by

delaying admission of a flow queue packet in the service level queue till it is eligible. However,

the additional GPS queue technique also requires a mechanism that should trigger off an

event when the current virtual time equals the virtual finish time of the packet at the head

of the line of GPS queue.

Alternatively, every time we update the virtual time we need to check if any of

the flow queue head-of-line packets that was previously refused admission, has now become

eligible to make it to service level queue. One method is to scan through list of all flow

queues within every service level queue checking for the same. However, this would be

computationally inefficient. We solve this problem as follows:

We maintain a circular array (say ineligiblepkts) subscripted by virtual time. Each

element ineligible[i] in the array is head to the list of pointers to flow queues whose head-

of-line packet’s virtual start time equals array index i. When we update current virtual

time (in enqueue/dequeue), we look at the ineligiblepkts[current virtual time] entry. All

36

Figure 5.2: Circular queue for ineligible packets

the packets in that list as well as all the packets in all lists from beginning of circular array

till index current virtual time are now eligible for admission to the service level queue. This

is illustrated in Figure 5.2. Packets pointed by all the elements in all grey colored lists

would make it to the service level queue in this pass. Start of the queue would be reset to

current virtual time i.e. at the beginning of black colored cells.

Virtual time grows with passage of time, however the number of ineligible packets

at any point in time has upper bound limited by number of flows in the system. Thus, we

use circular array of the order of number of flows. The algorithm is stated in Algorithm

6. Enqueue and Dequeue operations remain same as TSFQ-F except that we add packet

to the service level queue only if current virtual time ≤ virtual start time of packet and we

invoke algorithm 6 immediately after updating the virtual time.

Algorithm 6 TSF2Q Check for eligibility for service level admission
for all i such that start of array ≤ i ≤ current virtual time do

for every < classid, flowid > in list ineligible[i] do

Remove from ineligible[i]

Enqueue flowid in cl→ service level queue

end for

end for

start of array ← current virtual time

This functionality is available as a loadable module with name sch tsf2q-f.ko.

37

5.2.6 TSFQ-V

In real network situations, packets often have variable size. As explained in Section

2.4.3, we maintain certain k number of queues at each service level. Some of the queues are

dedicated to fixed packet sizes that frequently occur in network while others map packets

from certain range of size. In particular, we use three fixed size queues for packet sizes 40,

1200 and 1500 bytes. We also use three variable sized queues for packet sizes in range 1-39

bytes, 41-1199 bytes and 1201-1499 bytes.

Data structure struct tsfqv class instance corresponding to a service level is similar

to struct tsfqf class defined before. Again, service level queues are sequence of index numbers

that refer to flow queues. Unlike struct tsfqvf class though, we now maintain an array of

service level queues in struct tsfqv class.

We need to determine following things for an arriving packet:

• Service level it belongs to: Done by classifier routine by running through the filter

list.

• Flow queue it belongs to: Done by looking at the destination port in the packet.

• If the packet is at head of flow queue then, the service level queue it belongs to: Done

by looking at the packet size.

Service level queues dedicated to fixed packet sizes are implicitly sorted and thus

simple enqueue works for it. However, the service level queues for range of packet sizes

require insertion of the packet at appropriate position in order to maintain the service

level queue sorted according to virtual finish time. However, certain packet sizes dominate

Internet traffic. A study in [7] found that 3 common packet sizes constitute 90% of all

Internet traffic. Thus, sorting operations needs to be done only on the remaining 10%.

Moreover, these 10% packets are distributed over service level queues of various service

levels.

Fixed size packet service level queues are sorted according to both virtual start

and finish times. However, variable size packet service level queues are sorted according to

their virtual finish times only. Thus, we maintain one variable per service level which holds

minimum start time of packet in that service level. We update this variable when a packet

is inserted in service level or when a packet is dequeued from a service level.

38

When a packet is dequeued from a service level, the dequeued packet might have

been the one with minimum virtual start time. Thus, we need to look at every head of the

queue of fixed packet size service level queue and every packet in variable packet size service

level queue to determine the new minimum start time. The enqueue algorithm is described

in Algorithm 7.

Algorithm 7 TSFQ-V Enqueue(skb)
cl⇐ pointer to tsfqv class instance that this skb belongs to (return value of classifier)

flowid⇐ flow id of arriving packet skb (used to index in flow queue array)

if flowid queue is empty then

Sflowid = max{Fflowid, current V T} ; Fflowid = Sflowid + skb−>len
cl−>weight

fifoid⇐ fifoid of arriving packet skb based on its size

Enqueue in cl→ service level queue[fifoid]

Update cl→ min virtual time

end if

Enqueue skb in cl→ fifo queue[flowid]

Update Virtual time: Algorithm 1.

The dequeue operation needs to pick the flow with minimum virtual finish time

from all the service level queues across all the service levels. It then recalculates minimum

virtual start time for that service level. This version of TSFQ directly admits next packet,

if any, from the flow queue we just dequeued from into the service level queue. Since the

next packet might be of different size, we need to figure out which of the service level queue

it belongs to. The dequeue algorithm is described in Algorithm 8.

This functionality is available as a loadable module with name sch tsfq-v.ko.

5.2.7 TSF2Q-V

Section 5.2.5 delays admission of the head-of-line packet of flow queue into the

service level queue till it becomes eligible. Section 5.2.6 solves the problem of variable

packet sizes by maintaining different service level queues. We note that these problems

(and their solutions) relate to different pieces of logic in the scheduler. Thus, combining

these codes is straightforward. Enqueue and dequeue operations remain same as described

in Section 5.2.6. However, the update virtual time function is followed by algorithm 6 to

39

Algorithm 8 TSFQ-V Dequeue
cl⇐pointer to tsfqv class instance service level with minimum virtual finish time

fifiod⇐index into the service level queue within the service level cl

flowid⇐top element of cl→ service level queue[fifoid]

skb⇐dequeued packet from cl→ fifo queue[flowid]

Recompute cl→ min virtual time

if flowid queue is not empty then

new head skb⇐pointer to new head of flow queue

Sflowid = Fflowid ; Fflowid = Sflowid + new head skb−>len
cl−>weight

newfifoid⇐ fifoid of new head skb based on its size

Enqueue in cl→ service level queue[newfifoid]

end if

Update Virtual time: Algorithm 1.

check eligibility of packet to make it to the service level queue. For every eligible packet,

based on its size, we figure out which of the service level queues within a service level it

would map to and then enqueue it.

This functionality is available as a loadable module with name sch tsf2q-v.ko.

40

Chapter 6

Numerical Results

Figure 6.1 pictorially represents the testbed setup we used to carry out our ex-

periments. Machine 2 has two Ethernet ports. One is connected to each to Machine 1 and

another to Machine 3. The link between Machine 1 and Machine 2 is configured to run at

1 Gbps while the link between Machine 2 and Machine 3 is configured to run at 10Mbps.

Machine 1 sends UDP packets to Machine 3. Output interface of machine 3 (i.e. eth1) is

configured with our queuing discipline.

We use iperf [1] server on Machine 3 and send data from iperf clients running at

Machine 1. Iperf allows up to pick any data rate within the maximum supported speed

by outgoing interface. Thus, we can pump data into Machine 2 at rate much larger than

10Mbps. This results in queuing at Machine 2 outgoing interface eth1. We run multiple

iperf servers at Machine 3 and multiple iperf clients at Machine 2. This enables us to test

Figure 6.1: Testbed setup

41

how our implementation fairs.

However, while iperf allows us to choose UDP packet size for a particular client-

server session, it does not support variable packet sizes within a client-server session. Thus,

we wrote a simple UDP client-server program to achieve the same. Our UDP sender ran-

domly generates packet sizes such that packet sizes 40, 1200 and 1500 bytes have 30%

probability each. There is 10% chance that a packet size between 1-39 bytes, 41-1199 bytes

or 1201-1499 bytes would be picked . This aims at mimicking the usual network traffic

pattern of a small number of packet sizes dominating the traffic. Our UDP receiver keeps

count of number of bytes received in a particular period to compute the throughput. User

can choose a particular period at the time of starting receiver.

A detailed description of how to configure these machines to test our implementa-

tion is included in Appendix A.

We carried out following experiments to test our implementation:

• Start multiple flows with different weights at the same time. After a while, we ter-

minate flows one by one to see its effect on throughput of then backlogged flows (say

Scenario I).

• Start one (or very few flows) and allow it run for a while. Then we introduce new

flows with different weights. We terminate these newly introduced flows after a while

to see its effect on the remaining flows (say Scenario II).

• Run very large number of flows spanning across very few service levels (for TSFQ

variants).

42

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

Flow 1 weight 50%
Flow 2 weight 50%
Flow 3 weight 50%

Figure 6.2: Throughput WF2Q+ - Variable sized packets - 2 Flows

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 70%

Figure 6.3: Throughput WF2Q+ - Variable sized packets - 3 Flows

43

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Fixed size packets, Constant bit rate)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

Figure 6.4: Throughput WF2Q+ - Fixed sized packets - 4 Flows - Scenario I

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

Figure 6.5: Throughput WF2Q+ - Variable sized packets - 4 Flows - Scenario I

44

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Fixed size packets, Constant bit rate)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

Figure 6.6: Throughput WF2Q+ - Fixed sized packets - 4 Flows - Scenario II

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

Figure 6.7: Throughput WF2Q+ - Variable sized packets - 4 Flows - Scenario II

45

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

 Flow 1 weight 10%
 Flow 2 weight 10%
Flow 3 weight 4%
Flow 4 weight 4%
Flow 5 weight 4%
Flow 6 weight 4%
Flow 7 weight 4%
Flow 8 weight 4%
Flow 9 weight 4%

 Flow 10 weight 4%
 Flow 11 weight 4%
 Flow 12 weight 4%
 Flow 13 weight 4%
 Flow 14 weight 4%
 Flow 15 weight 4%
 Flow 16 weight 4%
 Flow 17 weight 4%
 Flow 18 weight 4%
 Flow 19 weight 4%
 Flow 20 weight 4%
 Flow 21 weight 4%
 Flow 22 weight 4%

Figure 6.8: Throughput WF2Q+ - Variable sized packets - 22 Flows - Continuous run

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

 Flow 1 weight 10%
 Flow 2 weight 10%
Flow 3 weight 4%
Flow 4 weight 4%
Flow 5 weight 4%
Flow 6 weight 4%
Flow 7 weight 4%
Flow 8 weight 4%
Flow 9 weight 4%

 Flow 10 weight 4%
 Flow 11 weight 4%
 Flow 12 weight 4%
 Flow 13 weight 4%
 Flow 14 weight 4%
 Flow 15 weight 4%
 Flow 16 weight 4%
 Flow 17 weight 4%
 Flow 18 weight 4%
 Flow 19 weight 4%
 Flow 20 weight 4%
 Flow 21 weight 4%
 Flow 22 weight 4%

Figure 6.9: Throughput WF2Q+ - Variable sized packets - 22 Flows - Flow 1 and 2 termi-
nated after 10 sec

46

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

WF2Q+ Throughput vs. Time (Variable size packets, Constant bit rate)

 Flow 1 weight 15%
 Flow 2 weight 15%
Flow 3 weight 5%
Flow 4 weight 5%
Flow 5 weight 5%
Flow 6 weight 5%
Flow 7 weight 5%
Flow 8 weight 5%
Flow 9 weight 5%

 Flow 10 weight 5%
 Flow 11 weight 5%
 Flow 12 weight 5%
 Flow 13 weight 1%
 Flow 14 weight 1%
 Flow 15 weight 1%
 Flow 16 weight 1%

 Flow 17 weight 1%
 Flow 18 weight 1%
 Flow 19 weight 1%
 Flow 20 weight 1%
 Flow 21 weight 1%
 Flow 22 weight 1%
 Flow 23 weight 1%
 Flow 24 weight 1%
 Flow 25 weight 1%
 Flow 26 weight 1%
 Flow 27 weight 1%
 Flow 28 weight 1%
 Flow 29 weight 1%
 Flow 30 weight 1%
 Flow 31 weight 1%
 Flow 32 weight 1%

Figure 6.10: Throughput WF2Q+ - Variable sized packets - 32 Flows - Continuous run

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-F Throughput vs. Time (Fixed size packets: 1470 bytes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.11: Throughput TSFQ-F - Fixed sized packets - 4 Flows - Scenario I

47

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-F Throughput vs. Time (Fixed size packets: 1470 bytes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.12: Throughput TSFQ-F - Fixed sized packets - 4 Flows - Scenario II

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSF2Q-F+ Throughput vs. Time (Fixed size packets: 1470 bytes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.13: Throughput TSF2Q-F - Fixed sized packets - 4 Flows - Scenario I

48

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-V Throughput vs. Time (Variable packet sizes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.14: Throughput TSFQ-V - Variable sized packets - 4 Flows - Scenario I

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-V Throughput vs. Time (Variable packet sizes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.15: Throughput TSFQ-V - Variable sized packets - 4 Flows - Scenario II

49

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSF2Q-V Throughput vs. Time (Variable size packets, Constant bit rate)

 Flow 1 weight 15%
 Flow 2 weight 15%
Flow 3 weight 5%
Flow 4 weight 5%
Flow 5 weight 5%
Flow 6 weight 5%
Flow 7 weight 5%
Flow 8 weight 5%
Flow 9 weight 5%

 Flow 10 weight 5%
 Flow 11 weight 5%
 Flow 12 weight 5%
 Flow 13 weight 1%
 Flow 14 weight 1%
 Flow 15 weight 1%
 Flow 16 weight 1%

 Flow 17 weight 1%
 Flow 18 weight 1%
 Flow 19 weight 1%
 Flow 20 weight 1%
 Flow 21 weight 1%
 Flow 22 weight 1%
 Flow 23 weight 1%
 Flow 24 weight 1%
 Flow 25 weight 1%
 Flow 26 weight 1%
 Flow 27 weight 1%
 Flow 28 weight 1%
 Flow 29 weight 1%
 Flow 30 weight 1%
 Flow 31 weight 1%
 Flow 32 weight 1%

Figure 6.16: Throughput TSFQ-V - Variable sized packets - 32 Flows - Continuous run

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-V Throughput vs. Time (Variable packet sizes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.17: Throughput TSF2Q-V - Variable sized packets - 4 Flows - Scenario I

50

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSFQ-V Throughput vs. Time (Variable packet sizes, Constant bit rate)

Flow 1 weight 15% (Tier I)
Flow 2 weight 15% (Tier I)
Flow 3 weight 35% (Tier II)
Flow 4 weight 35% (Tier II)

Figure 6.18: Throughput TSF2Q-V - Variable sized packets - 4 Flows - Scenario II

Figure 6.19: Throughput TSF2Q-V - Variable sized packets - 32 Flows - Continuous run

51

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in secs)

TSF2Q-V Throughput vs. Time (Variable size packets, Constant bit rate)

 Flow 1 period = 0.5 sec weight 15%
 Flow 2 period = 0.5 sec weight 15%
 Flow 1 period = 1.0 sec weight 15%
 Flow 2 period = 1.0 sec weight 15%

Figure 6.20: Throughput TSF2Q-V - Variable sized packets - 32 Flows - Continuous run
- Differnt periods

52

Chapter 7

Summary and Future Work

7.1 Summary

We implemented WFQ and four TSFQ variants in Linux Kernel as loadable mod-

ules. A Linux box can be easily configured to use our queuing discipline implementations

to test their performance.

We carried out experiments on real testbed. Our experimental results indicate

that TSFQ closely emulates previously proposed fair queuing disciplines. Even when we

run the experiment with comparatively large number of flows (32 in our case), we observe

that TSFQ does almost as good as WF2Q+ in constant time.

7.2 Future Work

• We showed that TSFQ behavior resembles WF2Q+ while managing to do the compu-

tations in constant time. Quantitative study needs to be done with regards to resource

overhead (caused by quantization) versus time saved by TSFQ.

• We compared TSFQ variants with WF2Q+ for our performance evaluation. TSFQ

variants should be compared with existing Linux queuing discipline implementations

like CBQ, HTB etc. for performance evaluation.

• In order to test our implementation, we generated UDP traffic based on observation

about common packet sizes in real life networks. It would be interesting to run our

implementation in real life network and since performance results.

53

Bibliography

[1] http://dast.nlanr.net/projects/iperf.

[2] http://devresources.linux-foundation.org/dev/iproute2/download.

[3] http://svana.org/kleptog/packet-shaping-howto.txt.

[4] www.kernel.org.

[5] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queuing algorithms. In Proc.

ACM SIGCOMM’96, pages 143–156, Aug. 1996.

[6] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queuing. In Proc.

IEEE INFOCOM’96, pages 120–128, San Francisco, CA, Mar. 1996. IEEE.

[7] K. Thompson G. J. Miller and R. Wilder. Wide-area internet traffic patterns and

characteristics. pages 10–23. IEEE Network, Nov/Dec 1997.

[8] A. Bhaskar G. N. Rouskas. Tiered service fair queuing (TSFQ): A Practical and

Efficient Fair Queuing Algorithm. 2006.

[9] Z. Dwekat G. N. Rouskas. A practical and efficient implementation of WF2Q+.

[10] S. Keshav. An Engineering Approach to Computer Networking: ATM Networks, the

Internet, and the Telephone Network. Pearson Education, 2004.

[11] J. Nagle. On packet switches with infinite storage. In IEEE Trans. on Comm. IEEE,

April 1987.

[12] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux netlink as an ip services

protocol. Technical report, 2003.

54

Appendices

55

Appendix A

Experiment setup

A.1 Testbed configuration

The experimental setup depicted in Figure 6.1 can be done by executing following

commands:

Machine 1:

• ifconfig eth0 200.1.1.1/30 up

• route add default gw 200.1.1.2 # Set Machine 2 as default gateway

• /etc/rc.d/init.d/iptables stop

Machine 2:

• ifconfig eth0 200.1.1.2/30 up

• ifconfig eth1 200.1.1.6/30 up

• /etc/rc.d/init.d/iptables stop

• sysctl net/ipv4/ip forward=1 # Enable ip forwarding

• ethtool -s eth1 autoneg off

56

• ethtool -s eth1 speed 10 duplex full # Set Ethernet to run at 10Mbps

Machine 3:

• ifconfig eth0 200.1.1.5/30

• route add default gw 20

• /etc/rc.d/init.d/iptabl

• ethtool -s eth1 auto

• ethtool -s eth1 speed 10 duplex full

A.2 Configuring Queuing disciplines

A.2.1 Configuring WF3Q+

• An interface to associate the queuing discipline with the outgoing network interface

in question (eth0 in our example).

tc qdisc add dev eth0 root handle 1:0 wfq bandwidth 100Mbit avpkt 1000 cell 8

• A parent class, which is parent of every flow.

tc class add dev eth0 parent 1:0 classid 1:1 wfq bandwidth 100Mbit prio 8 allot 1514

cell 8 maxburst 20 avpkt 1000 bounded

• For WF2Q+, we define ‘tc class’ such that each class corresponds to a separate com-

peting flow. The following command defines a parent class which is associated with

the outgoing interface in question (eth0 in this example).

tc class add dev eth0 parent 1:1 classid 1:3 wfq bandwidth 100Mbit weight 90 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 1

tc class add dev eth0 parent 1:1 classid 1:4 wfq bandwidth 100Mbit weight 10 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 2

• We would want to service the packets mapped to particular flow using FIFO.

tc qdisc add dev eth0 parent 1:3 handle 30: pfifo # flow 1

tc qdisc add dev eth0 parent 1:4 handle 40: pfifo # flow 2

57

• Tell the classifier to filter the packet with certain destination port to be mapped to

specific class id. For example, the following configuration would map packet with

destination port 6000 to class 1:3 and 6001 to class 1:4.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6000 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6001 0xffff flowid

1:4

A.2.2 Configuring TSFQ variants

• An interface to associate the queuing discipline with the outgoing network interface

in question (eth0 in our example).

tc qdisc add dev eth0 root handle 1:0 tsfq bandwidth 100Mbit avpkt 1000 cell 8

• A parent class, which is parent of every flow.

tc class add dev eth0 parent 1:0 classid 1:1 tsfq bandwidth 100Mbit prio 8 allot 1514

cell 8 maxburst 20 avpkt 1000 bounded

• For TSFQ, we define ‘tc class’ such that each class corresponds to a separate service

level. Following command defines a parent class which is associated with the outgoing

interface in question (eth0 in this example).

tc class add dev eth0 parent 1:1 classid 1:3 tsfq bandwidth 100Mbit weight 90 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 1

tc class add dev eth0 parent 1:1 classid 1:4 tsfq bandwidth 100Mbit weight 10 prio 5

allot 1514 cell 8 maxburst 20 avpkt 1000 # flow 2

• Quantization step: Tell the classifier to filter the packet with certain destination port

to be mapped to specific class id. For example, the following configuration would map

packets with destination port 6000 or 6001 to class 1:3 and 6002 and 6003 to class 1:4.

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6000 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6001 0xffff flowid

1:3

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6002 0xffff flowid

58

1:4

tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip dport 6003 0xffff flowid

1:4

We have implemented 4 variants of TSFQ viz. tsfqf, tsf2qf, tsfqv, tsf2qv. The

desired TSFQ variant can be configured by replacing tsfq in syntax noted above with the

name of TSFQ variant. Succeeding section*s explain these TSFQ variants.

A.3 Running UDP flows

A.3.1 Running iperf flows for fixed packet sizes

Machine 3: iperf server

iperf -s -p <portno> -u

Machine 1: iperf client

iperf -c 200.1.1.5 -u -p <portno> -u -b <speed>

A.3.2 Running our UDP application for variable packet sizes

Machine 3: UDP receiver

udp receiver <portno> <period>

Machine 1: UDP sender

udp sender 200.1.1.5 <portno>

A.4 Observing results

Both iperf and our UDP client-server program periodically prints the throughput.

Also, one can observe queue size on Machine 2 using dmesg command. We have put printk

statements within our kernel module implementation to observe that.

59

Appendix B

Abbreviations

CBQ Class-Based Queuing

FIFO First In First Out

GPS Generalized Process Sharing

HTB Hierarchical Token Bucket

IP Internet Protocol

QoS Quality of Service

RR Round Robin

SEFF Smallest Eligible Virtual Finish Time First

SFF Smallest Virtual Finish Time First

TCP Transmission Control Protocol

TSFQ-F Tiered Service Fair Queuing - Fixed packet size

TSFQ-V Tiered Service Fair Queuing - Variable packet size

TSF2Q-F Worst-case Fair Tiered Service Fair Queuing - Fixed packet size

TSF2Q-V Worst-case Fair Tiered Service Fair Queuing - Variable packet size

UDP User Datagram Protocol

WFI Worst-case Fair Index

WFQ Weighted Fair Queuing

WF2Q Worst-case Fair Weighted Fair Queuing

WF2Q+ Modified Worst-case Fair Weighted Fair Queuing

WRR Weighted Round Robin

