
ABSTRACT

HABERMAN, BRIAN KEITH. Cost, Delay, and Delay Variation Conscious Multi-
cast Routing. (Under the direction of Professor George N. Rouskas.)

We study the problem of generating multicast trees to control the communication

between members of a multicast group over a packet-switched network. These trees

must support the quality-of-service requirements of real-time applications. The mul-

ticast tree must satisfy three objectives : (1) bounded delays between the source and

all destinations, (2) minimized cost of the multicast tree, and (3) bounded variation

among the delays along the paths to all destinations.

The primary contribution of this thesis is a novel strategy for the constrained

Steiner tree problem. We present a heuristic that gives a good average case behavior

for the maximum delay variation among the destinations as well as a reduction in

the overall cost of the multicast tree. Our heuristic compares favorably with existing

multicast algorithms in terms of tree cost, system running time, and the satisfaction

of the delay and delay variation constraints.

COST, DELAY, AND DELAY VARIATION

CONSCIOUS MULTICAST ROUTING

by

Brian K. Haberman

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial ful�llment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh

1997

APPROVED BY:

Chair of Advisory Committee

ii

BIOGRAPHY

Brian Haberman was born January 27, 1969, in Berea, Ohio. He received the Bachelor

of Science degree in Computer Science from Clemson University in May, 1991. In 1995,

he joined the Computer Science Department at North Carolina State University to

pursue a Master of Science degree in Computer Science. He is employed in the

Networking Division of IBM in the Research Triangle Park, NC.

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank everyone who has helped me through

this intellectual adventure.

First, I would like to express my sincere gratitude to my advisor, Professor George

Rouskas. He has given me invaluable guidance, advice, and encouragement.

I would also like to thank the members of my advisory committee, Professors

Doug Reeves and Harry Perros, for their time and helpful advice.

To Tom and Sally Parsons, I owe a big thank you for the support and encourage-

ment they have given me throughout my pursuit of this degree.

To my parents, Jack and Phyllis, all the thanks in the world for the love and

support they gave me.

And, of course, the biggest thanks go to my wife, Rebecca, and my daughter,

Victoria. They were always there with love, understanding, and support when I

needed it most. Without them, this work would have been impossible.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Multicast Communication . 1
1.2 Organization . 3

2 Overview of Previous Work 4

2.1 Shortest Path Algorithms . 4
2.2 Steiner Tree Algorithms . 5
2.3 Constrained Steiner Tree Algorithms 6
2.4 Delay Variation Constrained Algorithms 7
2.5 Reliable Multicast Transport Protocols 8

2.5.1 Reliable Adaptive Multicast Protocol 9
2.5.2 Reliable Multicast Transport Protocol 10

3 Network Model 12

4 Steiner Trees with Delay and Delay Variation Constraints 14

5 Multicast Tree Algorithms for CCDVBMT 16

5.1 Algorithm Description . 16
5.2 Cost Conscious Delay Variation Multicast Algorithm (CCDVMA) . . 18
5.3 Cost Conscious 2 Delay Variation Multicast Algorithm (CC2DVMA) 20
5.4 Complexity Analysis . 21

6 Dynamic Reorganization of the Multicast Tree 24

6.1 Leave Requests . 25
6.2 Join Requests . 25

v

7 Simulation Environment 27

7.1 Simulation Tool . 27
7.2 Simulation Description . 28

8 Simulation Results 30

8.1 Average Path Delays . 30
8.2 Delay Variation . 32
8.3 Cost . 35
8.4 Multicast Tree Generation Failure Rate 37
8.5 System Running Time . 39
8.6 Major Results . 42

9 Summary and Future Work 43

9.1 Summary . 43
9.2 Future Work . 44

Bibliography 45

A Experimental Measurements for Variables k and l 48

B Additional Simulation Results 51

B.1 Results for Node Degree 2.5 . 51
B.2 Results for Delay Variation Constraint 0.02 54

C System Running Time Results for BSMA and KPP 57

vi

List of Figures

5.1 CCDVMA algorithm for the CCDVBMT problem 19
5.2 CC2DVMA algorithm for the CCDVBMT problem 22

8.1 Average Path Delay for 5% Multicast Group membership and 15%
network utilization . 31

8.2 Average Path Delay for 10% Multicast Group membership and 15%
network utilization . 31

8.3 Average Path Delay for 5% Multicast Group membership and 50%
network utilization . 32

8.4 Delay Variation Comparison for 5% Multicast Group membership and
15% network utilization . 33

8.5 Delay Variation Comparison for 10% Multicast Group membership and
15% network utilization . 34

8.6 Delay Variation Comparison for 5% Multicast Group membership and
50% network utilization . 34

8.7 Cost Comparison for 5% Multicast Group membership and 15% net-
work utilization . 35

8.8 Cost Comparison for 10% Multicast Group membership and 15% net-
work utilization . 36

8.9 Cost Comparison for 5% Multicast Group membership and 50% net-
work utilization . 36

8.10 Tree Generation Failure Percentage for 5% Multicast Group member-
ship and 15% network utilization . 38

8.11 Tree Generation Failure Percentage for 10% Multicast Group member-
ship and 15% network utilization . 38

8.12 Tree Generation Failure Percentage for 5% Multicast Group member-
ship and 50% network utilization . 39

8.13 Average Running Time for 5% Multicast Group membership and 15%
network utilization . 40

8.14 Average Running Time for 10% Multicast Group membership and 15%
network utilization . 41

vii

B.1 Average Path Delay for 5% Multicast Group membership, 15% network
utilization, and Average Node Degree = 2.5 52

B.2 Delay Variation Comparison for 5% Multicast Group membership, 15%
network utilization, and Average Node Degree = 2.5 52

B.3 Cost Comparison for 5% Multicast Group membership, 15% network
utilization, and Average Node Degree = 2.5 53

B.4 Tree Generation Failure % for 5% Multicast Group membership, 15%
network utilization, and Average Node Degree = 2.5 53

B.5 Average Path Delay for 10% Multicast Group membership, 50% net-
work utilization, and Delay Variation = 0.02 seconds 54

B.6 Delay Variation Comparison for 10% Multicast Group membership,
50% network utilization, and Delay Variation = 0.02 seconds 55

B.7 Cost Comparison for 10% Multicast Group membership, 50% network
utilization, and Delay Variation = 0.02 seconds 55

C.1 System Running Time for 5% Multicast Group membership and 15%
network utilization . 58

C.2 System Running Time for 10% Multicast Group membership and 15%
network utilization . 59

C.3 System Running Time for 5% Multicast Group membership and 15%
network utilization on smaller networks 59

viii

List of Tables

8.1 Average Number of Multicast Trees Generated per network for 5%
Multicast Group and 15% TraÆc Utilization 40

8.2 Average Number of Multicast Trees Generated per network for 10%
Multicast Group and 15% TraÆc Utilization 41

A.1 Upper limit and average values of k for 5% Multicast Group and 15%
TraÆc Utilization . 49

A.2 Upper limit and average values of l for 5% Multicast Group and 15%
TraÆc Utilization . 49

A.3 Upper limit and average values of k for 10% Multicast Group and 15%
TraÆc Utilization . 50

A.4 Upper limit and average values of l for 10% Multicast Group and 15%
TraÆc Utilization . 50

1

Chapter 1

Introduction

1.1 Multicast Communication

The recent advances in computer networking technology has led to the develop-

ment of new network-centric applications. These applications have varying require-

ments for the underlying network. One of the main requirements is the ability to

concurrently send messages to multiple users. Mechanisms to support multicast com-

munication are becoming an important aspect in the design of distributed systems

[20]. To ful�ll this need, algorithms have been developed to manage the transmission

of data from a user to multiple destinations. The primary method of implementing a

reliable multicast communication algorithm has been through the use of a multicast

tree [8].

It should be noted that the problem of generating multicast trees does not ad-

dress the problem of reliable communication. The multicast routing algorithms do

not have the responsibility of managing connection reliability. The higher-level trans-

port protocols are responsible for maintaining the connection reliability. A survey of

the transport layer protocols that address the problem of reliable mulitcast commu-

nication is presented in Section 2.5.

The growing interest in multicast communication has led to the development of

several algorithms to generate multicast trees. These algorithms have been developed

based on several di�erent optimization goals. Shortest path algorithms attempt to

2

minimize the cost of the paths, or delay, from the source to each of the destinations.

Several shortest path algorithms are presented by Bertsekas and Gallager [3]. Mini-

mum Steiner tree algorithms attempt to minimize the total cost of the multicast tree.

The minimum Steiner tree problem is NP-complete, but several heuristics have been

developed [8, 9, 23].

There are types of applications that have a requirement that the variation of delay

must be bounded between the destinations. With video-conferencing now available

on the Internet [12], it is desirable for all of the viewers to see and hear the speaker at

the same time. In an on-line software distribution system, the primary host will want

to guarantee that all the remote hosts get a new copy of software at the same time

so that the sites never lose integrity. This constraint was �rst used as a performance

measure in a study of existing multicast algorithms [17, 18].

Other methods of satisfying the variation of delay objective are possible. Bu�ering

at the source, at the switching nodes, or at the receivers may be used. Bu�ering at

the source would require the source to maintain additional information about all

destinations. In addition, the use of a multicast tree for routing would no longer be

needed since each message would have to be bu�ered a di�erent amount of time for

each destination. This causes the sender to incur the added cost of having to transmit

the same message multiple times. Bu�ering at the switching nodes su�ers from the

same problem. The nodes must now add complexity in order to support the bu�ering

function. Bu�ering at the receivers is a straightforward approach. The receiving

protocol bu�ers the message for an amount of time equal to the delay variation.

However, this requires the receivers to cooperate with the other members of the

multicast group. In the software distribution example above, this approach is usable.

In a scenario where the receivers are competing against one another, as in a distributed

game, the network cannot rely on the receivers to delay messages. Additionally, the

amount of bu�ering needed in this approach is directly proportional to the maximum

variation of end-to-end delays. By providing bounds for the delay variation, more

eÆcient usage of bu�er space will result. We believe that bu�ering at the receivers

may be used along with delay variation-based multicast routing algorithms to more

successfully address the problems caused by variation in end-to-end delay.

3

The delay variation constraint is the basis of a new multicast algorithm, Delay

Variation Multicast Algorithm(DVMA), presented by Rouskas and Baldine [2, 15].

Since the DVMA algorithm is concerned with the delays between sender and desti-

nations, it does not take into account the total cost of the tree. The main contribution

of our work is an extension of DVMA that takes into consideration the cost of the

resulting multicast tree. We will generate a multicast tree that will meet the delay

and delay variation constraints as well as minimize the cost of the multicast tree.

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 will present an overview of

existing multicast algorithms. Chapter 3 will detail our method of modeling multicast

communication over a packet-switched network. In Chapter 4 we will describe the

problem of meeting all three of the optimization goals. Chapter 5 will describe the

heuristic algorithms that we developed to meet the added cost objective. The test

environment will be described in Chapter 7. The results obtained will be presented

in Chapter 8 and our conclusions are in Chapter 9.

4

Chapter 2

Overview of Previous Work

The problem of reliable multicast communication has been studied extensively.

The existing multicast tree algorithms can be categorized by their optimization goals.

Historically, the two most common objectives have been the minimization of the end-

to-end delay from source to each destination and the minimization of the overall

cost of the multicast tree. Recently, a third constraint has been introduced : the

minimization of the variation between the end-to-end delays [17, 18, 2]. The follow-

ing sections will provide an overview of these constraints. The goal of the delay, or

shortest path, constraint and algorithms developed for this constraint will be reviewed

in Section 2.1. The least cost tree, or Steiner tree, algorithms will be described in

Section 2.2. The algorithms that attempt to satisfy both objectives are called con-

strained Steiner tree algorithms and they are reviewed in Section 2.3. Section 2.4 will

highlight the development of the delay variation constraint as well as the algorithm

designed for it. Section 2.5 will survey several multicast transport protocols that can

be used along with the multicast routing algorithms to guarantee reliable end-to-end

communication.

2.1 Shortest Path Algorithms

The primary goal of the shortest path constraint is to minimize the time it takes

to deliver information from a source to a destination. This constraint is the user's

5

view of the multicast connection. This problem can be solved, in polynomial time,

by any of the existing shortest path algorithms. Dijkstra's shortest path algorithm

[1] is one example. Dijkstra's algorithm creates a tree of shortest delay paths that

span the source node and all the destination nodes. The network is represented by a

graph where each edge represents the propagation delay between the nodes connected

by that edge. If the user speci�ed delay constraint cannot be satis�ed by this tree of

shortest paths, then no tree can satisfy the constraint.

2.2 Steiner Tree Algorithms

Section 2.1 shows how the problem of generating multicast trees can be solved to

satisfy the user's network requirement. The second approach to generating multicast

trees attempts to minimize the use of network resources. This problem corresponds

to the Steiner tree problem in graph theory. If the network is represented by a graph,

the edges in the graph represent a weight or cost, which is a measure of the utilization

of that physical connection. The Steiner tree problem involves constructing a tree

that spans a set of nodes and contains the minimum cost on its edges. This problem

has been proven NP-complete [6]. This means that a polynomial time solution does

not exist for this problem, unless P = NP. Several heuristics do exist that can

approximate the optimal solution.

Kou, Markowsky, and Berman developed the KMB [9] heuristic which has a

worst-case time complexity of O(mn2), where m is the size of the multicast group

and n is the number of nodes in the graph. The KMB algorithm �rst constructs

a complete undirected distance graph, G1, containing all Steiner points1 from the

original graph G. A minimum spanning tree of G1 is then found using Prim's or

Dijkstra's minimum spanning tree algorithm. A new subgraph G2 of G is formed by

replacing each edge in the minimum spanning tree of G1 by its corresponding shortest

path in G. A new minimum spanning tree is generated from the G2 subgraph. This

tree is then pruned of any leaves that are not Steiner points.

1The Steiner points consist of the source node and all the destination nodes of a multicast group

6

Ramanathan presented a heuristic algorithm [14] which solves the Steiner tree

problem for directed graphs. This algorithm builds a spanning tree in a step-wise

method. The tree is initialized with the multicast source node as being the only

element in the tree. At every step, a directed path is extended from the tree to a

multicast destination node, thus adding the destination to the tree. This process is

continued until all destination nodes have been added to the tree. The selection of

which path to add is done based on a priority scheme. The nodes already in the tree

are assigned a priority and put into a queue. The path that is chosen for inclusion

in the tree is the path of least cost from a destination node to a member of the

priority queue. The unique characteristic of this algorithm is the control knob feature

that dictates to what degree the algorithm will be concerned about tree cost versus

runtime eÆciency.

2.3 Constrained Steiner Tree Algorithms

The constrained Steiner tree algorithms attempt to generate a minimum cost tree

without violating the user imposed delay constraint. This approach requires the

generation of a graph to represent the network. The di�erence is that each edge in

the graph now has two costs associated with it. The �rst cost is the delay encountered

while traversing the link. The second cost is the utilization of the link. Since the

constrained Steiner tree problem contains the Steiner tree problem, it is also an NP-

complete problem. The only solutions for this problem are heuristics, such as KPP,

BSMA, and CAO.

Kompella, Pasquale, and Polyzos developed the KPP algorithm [8] as a solution

to the constrained Steiner tree problem. KPP assumes that the delay bound, �,

is an integer. It then computes a constrained closure graph. If the delay bound

assumption holds, this can be done in polynomial time. Once the closure graph is

generated, a spanning tree is created from this graph by incrementally adding edges

with minimum cost that do not violate �.

The Bounded Shortest Multicast Algorithm, BSMA, approach was developed by

Zhu, Parsa, and Garcia-Luna-Aceves [23]. BSMA starts by calculating a shortest

7

path tree for the source and given multicast destination group. It then iteratively

replaces paths in the tree with cheaper cost paths not in the tree that do not violate

the delay bound until the total cost of the tree cannot be reduced any further. BSMA

uses a kth-shortest paths algorithm to generate the set of replacement paths used in

the path switching. The running time for BSMA is O(kjV j3logjV j), where k is the

number of paths found by the kth-shortest paths algorithm and V is the set of nodes

in the graph.

Widyono's solution to the constrained Steiner tree problem is the Constrained

Adaptive Ordering, or CAO algorithm [22]. CAO uses a constrained Bellman-Ford

algorithm to iteratively connect multicast group members to the source. The con-

strained Bellman-Ford algorithm is a breadth-�rst search to �nd the least cost path

from the source to all other nodes in the network. After each iteration of the Bellman-

Ford algorithm, the destination node with the cheapest path to the source is added

to the existing tree. It was found, however, that there are cases in which the running

time of CAO grows exponentially with respect to the number of nodes in the graph

[18].

2.4 Delay Variation Constrained Algorithms

The delay variation constraint is the latest user requirement for multicast trees.

It was �rst used as a performance metric for a comparative study of multicast routing

algorithms [17, 18]. The need for minimizing the delay variation between destinations

can be seen as reducing the competitive advantage a destination gains by being able

to process a message sooner than another destination.

The �rst use of delay variation as a user constraint in a multicast tree algorithm

wass presented by Rouskas and Baldine [2, 15]. The Delay Variation Multicast Al-

gorithm, or DVMA, operates under two user imposed constraints, the delay bound,

�, and the inter-destination delay variation, Æ. DVMA will return a multicast tree

that either meets the user imposed constraints or it returns a tree that meets � and

has the least value of Æ.

DVMA initially constructs a tree T0 of shortest paths from s to all destination

8

nodes using Dijkstra's algorithm [4]. If T0 does not satisfy �, then no tree can satisfy

it and the algorithm terminates. The value of � will then need to be re-negotiated.

If T0 satis�es � and Æ, then T0 is the solution for the speci�ed network and is used

for the multicast session. T0 is the optimal solution for the delay bound constraint,

�.

If T0 satis�es �, but does not satisfy Æ, DVMA begins a heuristic search to

construct a new tree which satis�es both � and Æ. DVMA does this by employing

an approach similar to that used by BSMA. DVMA employs incremental path

switching to generate a tree T that meets both � and Æ. The algorithm maintains a

list of destination nodes not in the tree. It then picks a destination node from this

list and �nds the k shortest paths from it to a node in the tree. These k paths must

not use any edges or nodes already in the tree T . The k shortest paths are chosen so

that if no feasible tree can be found, the total delay along the path will be at most

�, and the tree resulting from the addition of this path will have the lowest delay

variation among the possible trees constructed by adding the destination node using

other paths.

The complexity ofDVMA is dominated by the path switching. In the worst case,

DVMA has a complexity of O(klmn4), where k is the number of paths generated

from the source to a non-attached destination node, l is the number of paths from a

non-attached destination to an attached node, m is the number of destination nodes,

and n is the total number of nodes in the network.

2.5 Reliable Multicast Transport Protocols

The use of multicast routing protocols does not guarantee reliable communica-

tion between the sender and the destination group. That responsibility falls on the

transport layer protocol. The need for reliable multicast communication increases as

more collaborative, interactive applications become available. In our video-conference

example, the sender would like a guarantee that data will be delivered in an orderly

manner to ensure consistent presentations across the destination group. In the case

of the software distribution system, the sender wants to guarantee reliability of the

9

data being delivered to avoid having sites in an inconsistent state. In either case, the

multicast transport protocol controls the reliability of the communication sessions.

There are several multicast transport protocols that have been proposed and/or im-

plemented. Section 2.5.1 describes a transport protocol based on a multicast trans-

mission with negative acknowledgements mechanism. In Section 2.5.2, we survey a

multicast transport protocol that guarantees complete reliability by using a hierarchi-

cal approach.

2.5.1 Reliable Adaptive Multicast Protocol

The Reliable Adaptive Multicast Protocol (RAMP) was described by Koifman and

Zabele [7]. RAMP is designed to guarantee reliable, orderly delivery of multicast

packets. The protocols foundation is based on the underlying network on which it was

developed. The ARPA-sponsored TestBed for OpticalNEtworking (TBONE) is an

all-optical, circuit switched, gigabit network. However, the packet loss characteristics

of TBONE resemble those of switched virtual circuit ATM networks and packet-

switched networks that employ reservation services. This means thatRAMP's design

is functional for the next generation of packet switched networks.

RAMP is a transport layer multicast protocol designed to operate over network

layer multicast protocols such as IP multicast. Unlike some multicast transport pro-

tocols, RAMP is fully reliable. This means that an application is noti�ed whenever

a receiver or a sender fails. For collaborative interactive applications in which each

node is a sender and a receiver to a multicast group, this is highly desirable. And be-

cause RAMP maintains state information about all members of the multicast group

in order to guarantee full reliability, source knowledge of the destination set is known,

thus eliminating the need for Internet Group Management Protocol services.

The TBONE network has extremely low bit-error rates (10�12 or better) and

the switches do not have any store-and-forward capability. Because of these charac-

teristics, packet loss in TBONE is almost always caused by bu�er over
ow at the

receiver. RAMP exploits this by using a receiver-initiated, NAK-based, unicast er-

ror noti�cation mechanism. When the receiver detects a packet loss, it immediately

10

transmits a unicast NAK packet to the sender. The sender then re-transmits the lost

packet as a unicast packet to the receiver that initiated the NAK. This method of
ow

control is based on the fact that receiver losses are independent. If the lost packet

is retransmitted as a multicast packet, the other receivers are forced to unnecessarily

process and discard the packet.

The performance of RAMP is mixed. Over TBONE, the protocol performs well

when compared against TCP and UDP. The observed throughput compares well with

the theoretical values. Packet loss measures and recovery tests show that RAMP

performs very well. However, its performance su�ers when applied to other network

topologies. Test-cases run over Ethernet show that duplicate transmission handling

and
ow control performance degrades faster than can be justi�ed. Additional devel-

opmental work is being done on RAMP [7].

2.5.2 Reliable Multicast Transport Protocol

For some applications, such as a software distribution system or medical imaging

systems, data reliability is more important than bounded delay. The Reliable Mul-

ticast Transport Protocol (RMTP) [11] is designed to guarantee complete reliability.

RMTP provides sequenced, lossless delivery of bulk data from a sender to a multicast

group.

The basic ideas behind RMTP were derived from the Designated Status Protocol

(DSP) [13]. In particular, RMTP employs a hierarchical approach to message ac-

knowledgements. The use of Designated Receivers helps to avoid the ACK-implosion

problem. This allows for an eÆcient selective retransmission scheme that does not

ood a sender. Any retransmission requests are �rst handled by the receiver's des-

ignated receiver. The designated receiver for an area caches all transmissions by the

sender and responds to retransmission requests with the data stored in the cache.

RMTP employs a windowed
ow control mechanism with congestion avoidance.

It makes no assumptions about the bu�er space or processing power at any of the

receivers. The protocol also allows for receivers to throttle back the sender during a

congestion period. Because the communication is multicast, the sender will only send

11

data to the group as fast as the slowest receiver can handle it. While this degrades

performance for other receivers, it maintains the data reliability for all receivers.

Currently, RMTP is still in a prototype stage. The preliminary testing shows

promise. The use of the designated receivers keeps the sender from being
ooded with

retransmission requests. The protocol also adapts well to receivers in various network

environments. However, it does this at the cost of performance on faster networks.

Additional details into the implementation of RMTP are outlined by Lin and Paul

[11].

12

Chapter 3

Network Model

We consider the problem of generating communication paths through a packet-

switched network for multicast traÆc. We model the network as a simple1, connected,

directed graph G = (V;E), where V denotes the set of nodes in the network, and

E represents the set of edges. These edges correspond to the communication links

between the nodes in the network. The existence of a link e = (u; v) from u to v

implies the existence of a link e0 = (v; u) for any u; v 2 V .

Any edge e 2 E will have two associated weights. The link delay function D(e)

assigns a non-negative weight to each edge. D(e) represents the delay a data packet

experiences on that link, and it is the sum of the switching, queueing, transmission,

and propagation delays. The link cost function C(e) is a function of the amount of

traÆc traversing link e and the amount of bu�er space needed for that traÆc. In other

words, it is a measure of the link utilization. Because the network is asymmetric, it

is often the case that C(e) 6= C(e0) and D(e) 6= D(e0).

In the multicast communication scenario, a source node s 2 V is transmitting

data packets destined for a multicast group M � V , where j M j�j V j. In order for

multicast communication to proceed, multicast connections are established. During

this establishment period, the source node s must determine paths to all members of

M . These paths are used to construct a multicast tree T = (VT ; ET), VT � V and

ET � E, rooted at s. Nodes which are not members of M may be contained in VT
1The graph will contain no more than one edge between an ordered pair of nodes

13

as relay nodes. Relay nodes forward packets along adjacent links without actively

participating in the multicast communication.

We de�ne PT (s; g) � ET to be the set of links from s to g 2 M . The total delay

experienced along this path is
P

e2PT (s;g)D(e). The cost of PT (s; g) is
P

e2PT (s;g) C(e).

The application utilizing the multicasting services must supply two parameters that

specify the quality of service, QoS, required. The delay tolerance, �, represents an

upper bound on the acceptable end-to-end delay along the path from s to any g 2M .

The maximum acceptable di�erence between the end-to-end delays along any two

paths PT (s; g) and PT (s; f), g; f 2 M , is represented by the parameter Æ. These

parameters specify the requirements for the application to run. If these parameters

cannot be met, the application will abort. In addition, the cost of the multicast tree

must be the minimal cost tree that meets the user constraints. Therefore, we will now

discuss the problem of balancing the user requirements with the network requirement.

14

Chapter 4

Steiner Trees with Delay and

Delay Variation Constraints

With the network model described in Chapter 3, we can now formally de�ne

the problem of generating a multicast tree that meets the delay and delay variation

constraints with minimal cost. We allow � to be the delay constraint and Æ to be the

delay variation constraint as speci�ed by the user application attempting to initiate a

multicast session. The Delay and Delay Variation-Bounded Multicast Tree(DVBMT)

problem was �rst identi�ed by Baldine [2]. The problem we address in this work

integrates DVBMT with the problem of minimizing the overall cost of the multicast

tree. The objective is to construct a multicast tree such that the delays along the

paths from the source to the destinations are within the user constraints and the

overall cost of the tree is minimized. More formally, we express the Cost Conscious

Delay and Delay Variation-Bounded Multicast Tree problem as follows.

Problem 1 (CCDVBMT) Given a network G = (V;E), a multicast group M �

V , a source node s 2 V , a link delay function D, a link cost function C, a delay

constraint �, a delay variation constraint Æ, and an overall cost C, does there exist a

tree T = (VT ; ET) spanning s and all the nodes in M , such that :

X

e2PT (s;g)

D(e) � � 8g 2M (4.1)

15

j
X

e2PT (s;g)

D(e) �
X

e2PT (s;f)

D(e) j � Æ 8g; f 2M (4.2)

X

e2ET

C(e) � C (4.3)

If a set of trees can be found that satis�es both (4.1) and (4.2), the tree of least

cost will be chosen as a solution to the problem. In the event that only a single tree

is found that satis�es (4.1) and (4.2), it is the solution to the problem, regardless of

its overall cost. When no tree can be found that meets the � and Æ constraints, the

multicast session cannot continue. More formally, in order for the multicast session

to proceed, it is necessary and suÆcient that (4.1) and (4.2) be met by at least one

tree.

The CCDVBMT problem can be seen to be NP-complete. If the constraints (4.1)

and (4.2) are removed, the problem reduces to the Steiner tree problem. The Steiner

tree problem is a well-known NP-complete problem [5]. CCDVBMT also reduces to

the DVBMT problem [2, 15] if the constraint (4.3) is removed. The DVBMT problem

was also proven to be NP-complete [2, 15].

An observation made is that (4.1) and (4.2) are con
icting objectives and that a

balance must be struck between the two constraints [2]. In essence, the longest delay

path in G will a�ect the selection of all other paths. With the addition of a cost

component, a balance must now be found between three con
icting requirements.

The delay constraint (4.1) has been considered in several previous works on de-

signing multicast trees [1, 8, 23]. The cost objective (4.3) is the basis for several

algorithms that minimize the network resources [9, 14]. Algorithms that balance

these two constraints address the constrained Steiner tree problem and several repre-

sentative examples are available [8, 22, 23]. The delay variation constraint (4.2) was

�rst introduced as a performance metric [17, 18]. Until the introduction of DVMA

[2], the delay variation constraint had not been considered in the construction of mul-

ticast trees. To the best of our knowledge, this work is the �rst that takes all three

objectives into account.

16

Chapter 5

Multicast Tree Algorithms for

CCDVBMT

Chapter 4 formulated the CCDVBMT problem, and now we will attempt to solve

it. Because the problem in question is NP-complete, a polynomial time solution only

exists if P = NP. In this chapter, we will introduce several heuristics to solve to the

CCDVBMT problem.

5.1 Algorithm Description

We make the assumption that the node initiating the multicast session has com-

plete knowledge of the network topology. There are several protocols available that

can be used to collect this information [3]. Once this information is collected, the

algorithm performs the following steps.

1. Generate a tree T0 of least cost paths to each destination

2. Run the CCDVMA algorithm to obtain a new tree T

3. If T satis�es (4.1) and (4.2), return T and stop

4. If T does not satisfy (4.2), re-negotiate Æ

5. If T satis�es the new Æ, return T and stop

17

6. Stop

The main di�erence between this algorithm and the one presented by Rouskas and

Baldine [2, 15], is that we make the assumption that the delay bound � and delay

variation bound Æ are inter-related. That is, the �nal delay variation value for any

tree T is going to have an a�ect on the delays along all paths in T . For that reason,

we do not test the delay bound individually for compliance until the invocation of

the CCDVMA algorithm.

The algorithm generates a tree T0 of least cost paths using Dijkstra's algorithm

[4]. The algorithm then performs a search algorithm in an attempt to construct a tree

that will satisfy (4.1) and (4.2). It should be noted that it is possible that a feasible

tree does not exist for the CCDVBMT problem. In this situation, the application

has the choice of abandoning the connection or re-negotiating the values of � and Æ.

If the application can �nd an acceptable value for the constraints, the source node

would go through another iteration of the steps outlined above.

In order to facilitate the re-negotiation process, the search algorithm has been

designed to return the tree which comes closest to meeting the Æ constraint if a

feasible tree is not found. If two or more trees exist with the same Æ, the tree of least

cost is returned. So, even though a solution to the CCDVBMT problem may not

exist, the best tree that can be obtained, given the network topology, is available to

the application. If this tree meets the re-negotiated constraints, the application does

not have to re-run the algorithm.

The following sections present two new multicast tree heuristics designed to solve

the CCDVBMT problem. Section 5.2 describes the CCDVMA algorithm and its re-

lationship to the DVMA predecessor. Section 5.3 presents CC2DVMA, a modi�ed

version of DVMA.

18

5.2 Cost Conscious Delay Variation Multicast Al-

gorithm (CCDVMA)

This section introduces the Cost Conscious Delay Variation Multicast Routing

Algorithm(CCDVMA). The basic philosophy of CCDVMA is to start with a tree

of smallest cost paths and incrementally replace paths in the tree in order to meet the

delay and delay variation constraints. CCDVMA will always return a tree to the

application. The tree returned will either be the tree of least cost found that satis�es

� and Æ, or it will be a tree of least cost found that comes closest to meeting both

user constraints.

As stated above, we start with a tree of smallest cost paths T0 spanning s and

M . We can generate such a tree in O(n2) using Dijkstra's algorithm [4] allowing the

link cost function to be the utilization of that link rather than the delay measure. By

generating the initial tree in this manner, we are starting with the optimal cost paths

from the source to all the destinations. The search algorithm in Figure 5.1 is run to

generate a set of candidate trees from which the best one is chosen.

The search algorithm modi�es the tree T0 using a form of path substitution.

We apply a similar logic as that used in DVMA [2, 15]. We assume that a tree

T = (VT ; ET) spanning s and a subset of M has been determined. We let U =

M � (M
T
VT) be the set of destinations not yet in T . We then incrementally build

T using the following three steps:

1. Select a destination node u 2 U

2. Find a good path from u to v 2 VT

3. Construct a new tree T 0 by connecting all nodes and edges in this path to T ,

and update U to exclude u and any other node used in the path

In the DVMA approach, step 2 chose paths that did not use any nodes already

in the tree other than v or any edges in ET . Our approach is to allow as much path

sharing as possible. Path sharing is a crucial element in the reduction of the overall

tree cost [8]. The selection of a path in step 2 should allow the resulting tree in step 3

19

M is the set of destinations
T0 is the tree of smallest cost for graph G = (V;A)
BEGIN
1 T = T0

2 Find the �rst k paths, p1::pk, of smallest cost from the source
s to a destination d 2M , where d is the node with the
highest cost path that does not exceed �

3 for i = 1 to k do
4 Initialize Ti = (Vi; Ai) to include path pi
5 Let U = M � (M

T
Vi) be the set of destinations

not yet connected to the tree Ti

6 while U 6= � do
7 Pick any node u 2 U

8 for each node v 2 Vi do
9 Construct a new graph G0 from G by excluding all nodes

in Vi � fvg and all links in Ai

10 Find the �rst l least cost paths from v to u

in the new graph G0

11 Of these l paths, choose the least delay path and call it qv
12 end of for loop
13 Select the best path q among all paths qv; v 2 Vi

14 Update Ti = (Vi; Ai) to include all nodes and links in path q

15 Update U to remove links and nodes now in Ti

16 end of while loop
17 Let T be the tree among T and Ti with the smallest cost that

satis�es �
18 end of for loop
19 return T

END

Figure 5.1: CCDVMA algorithm for the CCDVBMT problem

20

to be a feasible tree for the subset of M it contains. In order to �nd that path, we

generate a set of l paths of smallest cost from u to v. These paths are found using a

graph G0 created by excluding all nodes in Vi except v and all edges in Ei from the

original graph G. This is done so that the addition of any of the l paths into T will

not create a cycle. In order to handle the situation where there is no feasible tree

including a path from v to u, we repeat the process for u and all nodes v 2 VT . This

allows the \good path" for u to be selected from all possible paths into T .

The above description assumes that we have a tree that spans s and a subset of

M . We must address how we choose the initial subset. We start with a subset of

size one, and pick the destination node that has the highest cost path in T0 that does

not have a delay component that exceeds � to be the initial member. The DVMA

approach was to pick the node with the longest delay path because a shorter delay

path did not exist. However, CCDVMA is working with an initial tree that has

minimal cost not minimal delay. From this initial tree T , we then incrementally add

destination nodes to the tree using the steps outlined above.

It should be noted that a multicast tree will be returned in all cases. This is

based on the assumption that the graph G representing the network is connected.

This means that there will always be at least one path from s to any node g 2 M .

The tree returned, however, may not be a feasible tree if there is no path in G from

s to g that does not meet (4.1). In this situation, there is a con
ict between the

network and the user constraint �. This will cause an infeasible tree to be returned,

but this tree is the best that can be done with the current network characteristics.

5.3 Cost Conscious 2 Delay Variation Multicast

Algorithm (CC2DVMA)

The second algorithm designed for the CCDVBMT problem is called Cost Con-

scious 2 Delay Variation Multicast Algorithm. CC2DVMA is modeled more like

the original DVMA. The algorithm logic is outlined in Figure 5.2. The two main

di�erences are in the checking that is done on the initial tree and the decision making

21

process as to which tree is the best feasible tree. We will now describe these two

di�erences in greater detail.

Dijkstra's shortest path algorithm is employed by DVMA to generate an initial

tree of smallest delays. This tree T0 is then tested to see if it satis�es (4.1) and (4.2). If

it does, all the user constraints are satis�ed, and the multicast session establishment

can continue to the next phase. If (4.1) is satis�ed but (4.2) is not, the DVMA

search algorithm is applied to T0. In CC2DVMA, the initial tree T0 is generated

using Dijkstra's shortest path algorithm as well. Then T0 is passed directly to the

CC2DVMA search algorithm for processing. We do not test the initial tree for

compliance with (4.2) since we want to try and minimize the tree cost. How that is

done is explained below.

If the initial tree did not meet the delay variation constraint, the DVMA search

algorithm picked the tree T with the smallest ÆT . With CC2DVMA the tree with

the lowest cost that satis�es the delay and delay variation constraint is chosen as the

best feasible tree. This additional restriction forces the search algorithm to process all

possible paths. This added cost causes the average-case complexity of CC2DVMA

to be the same as its worst-case complexity.

Even though they di�er in their approach, CCDVMA and CC2DVMA give

very similar results. This will be seen in Section 8.

5.4 Complexity Analysis

The running time complexity of CCDVMA is directly derived from its predeces-

sor DVMA. In our analysis

� k is the number of paths generated at line 2 of Figure 5.1

� l is the number of paths generated at line 10 of Figure 5.1

� m =jM j, the size of the multicast group

� n =j V j, the number of nodes in the network

22

M is the set of destinations
T0 is the tree of least delay for graph G = (V;A)
BEGIN
1 T = T0

2 Find the �rst k paths, p1; ::; pk, of shortest
delay from the source s to a destination d in M

where the path to d is the highest delay path in T

3 for i = 1 to k do
4 Initialize Ti = (Vi; Ai) to include path pi
5 Let U = M � (M

T
Vi) be the set of destinations

not yet connected to the tree Ti

6 while U 6= � do
7 Pick any node u 2 U

8 for each node v 2 Vi do
9 Construct a new graph G0 from G by excluding all nodes

in Vi � fvg and all links in Ai

10 Find the �rst l shortest paths from v to u

in the new graph G0

11 Of these l paths, choose the least delay path and call it qv
12 end of for loop
13 Select the best path q among all paths qv; v 2 Vi

14 Update Ti = (Vi; Ai) to include all nodes and links in path q

15 Update U to remove links and nodes now in Ti

16 end of while loop
17 Let T be the tree among T and Ti with the smaller

cost and meets the �T constraint
18 end of for loop
19 return T

END

Figure 5.2: CC2DVMA algorithm for the CCDVBMT problem

23

The running time of CCDVMA is dominated by the loop from line 3 to line 18

in Figure 5.1. This loop is executed at most k times. During an iteration of this outer

loop, the loop from line 6 to 16 is executed at most m� 1 times. Inside this loop, the

computation time is determined by the number of nodes in VT and the l-shortest path

algorithm at line 10. The algorithm at line 10 takes O(ln3) [10]. The complexity of

the innermost loop becomes O(ln4). Therefore, the overall complexity of CCDVMA

is O(klmn4).

Rouskas and Baldine stated that the maximum value that parameters k and l could

take is equal to the maximum number of paths of delay at most �, and they expected

the maximum value of k and l to actually be small constants [15]. In addition, for our

simulations and the simulations carried out by Rouskas and Baldine, k has an imposed

upper bound of 3n and l has an upper bound of n [15, 2]. Measurements taken in

our simulations show that k and l take on values much lower than the imposed upper

limits. Appendix A show the measurements of k and l.

It also holds that CC2DVMA has a running time complexity of O(klmn4).

However, CC2DVMA's average time complexity is the same as its worst-case time

complexity. This is due to the fact that, unlike DVMA, CC2DVMA inspects every

tree that it can generate. In DVMA, if the search algorithm is invoked, it terminates

upon �nding the �rst tree that satis�es (4.2). CC2DVMA, on the other hand, must

inspect all of the possible trees in order to �nd the one of least cost that satis�es the

user constraints.

24

Chapter 6

Dynamic Reorganization of the

Multicast Tree

Chapter 5 presented the static implementation of the CCDVMA algorithm. All

group members, 8g 2 M , were known prior to the invocation of CCDVMA. Now

we address the question of dynamic updates to the multicast group.

The ability of a node to dynamically join or leave a multicast group is becoming

more important. Applications, such as video-conferencing, do not expect the mul-

ticast group membership to remain constant through the life of the multicast con-

nection. For that reason, we address the problems associated with any node v 2 G

issuing a LEAV E(M) or JOIN(M) request at any time. After v makes such a re-

quest, we now have a new destination set, M 0 = M � v or M 0 = M
S
fvg. However,

we want to avoid having to run CCDVMA again to obtain a new tree T 0 for M 0.

By not re-running CCDVMA, we not only save on computation time, but we also

avoid the expenses occurred in

� Tearing down existing multicast connections

� Constructing new connections

� Completing other steps in the connection establishment phase

Such an approach may also lead to other destination nodes experiencing interruption

25

in their service. For these reasons, we now present methods to allow dynamic multi-

cast group updates with minimal cost in computation and the least amount of service

interruption. We address dynamic LEAV E(M) requests in Section 6.1 and dynamic

JOIN(M) requests in Section 6.2.

6.1 Leave Requests

When a node v 2 M issues a LEAV E(M) request, there are two possible situ-

ations that need to be handled. Node v can either be a leaf node of the tree T , or

it is an internal node of T . Neither situation results in interruption of the multicast

service for nodes other than v.

If v is an internal node in the tree T , then the handling is simple. The multicast

traÆc is no longer forwarded to the user process at v. Node v remains a member of

the tree T , but now is strictly a relay node for all members ofM that are downstream

of v. The resulting tree T 0 is identical to the original tree T and no node other than

v has an interruption of service.

On the other hand, if v is a leaf node of T , we must prune T of v so that we do

not waste bandwidth. This is accomplished by removing v and all relay nodes that

only provide service for v from the tree T . This can be accomplished by traversing

the path from v to s until we arrive at s or a node that has a downstream path other

than the path to v. The pruning of T does not cause any interruption of multicast

service for any node other than v.

6.2 Join Requests

In the case where node v =2M requests to joinM , we must consider three di�erent

scenarios. Each scenario requires a di�erent method for handling the request. We

will explain each method and the a�ect it has on the existing multicast connection.

In the �rst situation, v =2 VT issues a JOIN(M) request. The tree T must be

augmented to include a path from a node u 2 VT to the new node v. This can be

accomplished by using CCDVMA (Figure 5.1) and initializing T = (VT ; ET) at line

26

4 and U = fug at line 5. We then execute lines 6 through 16 to search for a feasible

tree for M
S
fug. The addition of a path to u only involves u and does not cause an

interruption of multicast service to any existing member of M . The time complexity

of this method of tree augmentation can be seen to be O(ln4).

If a feasible path cannot be found for u, there are two options. The �rst option

is to tear down the multicast connections and invoke CCDVMA for the multicast

group M 0 = M
S
fug. The second, and less expensive, option is to deny admission to

the group.

The second situation involves v 2 VT issuing a JOIN(M) request. If the con-

straint (4.2) is satis�ed, v may begin to forward the multicast traÆc to its user

process. Since v is already in T , we know it is not a leaf node and that it satis�es

(4.1). No interruption of the multicast session occurs and T is a feasible tree for the

new multicast group M 0.

The last case involves a JOIN(M) request from a node v 2 VT . However, in this

case, (4.2) is not satis�ed. In order for v to become a member of M , a longer path

from s to v must be found. In addition, all current nodes that are in the subtree

rooted at v will be a�ected by this change. Consequently, we must re-calculate the

paths from s to all destination nodes that are in v's subtree. Let W � M be the set

of nodes that are downstream of v. We again apply part of CCDVMA (Figure 5.1).

Let T 0 be the tree created from T by excluding the subtree rooted at v. We allow

T = T 0 at line 4 and U = W
S
fug at line 5. The lines 6 through 16 are executed to

create a new feasible tree for the new multicast group M 0. The time complexity of

this operation is O(lmn4).

27

Chapter 7

Simulation Environment

7.1 Simulation Tool

The results from this research were obtained using the multicast routing simulator

MCRSIM c
1, developed at North Carolina State University by Hussein Salama [16].

The MCRSIM c
 package allows the user to create network graphs, run multicast

algorithms on these graphs, and simulate traÆc
ow.

The MCRSIM c
 package simulates actual ATM networks with �xed cell sizes

and heterogeneous link capacities. It does the simulation at the cell level rather than

the call level. This allows us to get actual end-to-end delay, delay jitter, and cell loss

rates. A call level simulator can only estimate these measures.

MCRSIM c
 also supports multiple traÆc types in order to simulate an actual

high-speed network. The multicast source traÆc can be voice or video. Both of

these are variable bit rate sources suitable for a host of multimedia applications. The

simulation package also models background traÆc on each link. The background

traÆc can either be multiplexed video sources or an aggregate batch source.

There are several multicast routing algorithms implemented inMCRSIM c
. The

set of algorithms implemented allows for a meaningful comparison between our new

algorithms and existing ones. The algorithms supported in this package are:

1MCRSIM can be downloaded from ftp://ftp.csc.ncsu.edu/pub/rtcomm/mcrsim.html

28

� Unconstrained Algorithms : KMP, Least Delay, Dijkstra's Least Cost,

Bellman-Ford Least Cost, Minimum Spanning Tree, Reverse Path Multicast-

ing, Water's SC heuristic, and a modi�ed Water's SC heuristic

� Delay Constrained Algorithms : KPP, CAO, BSMA, and the optimal con-

strained Steiner tree algorithm

7.2 Simulation Description

The experiments were carried out using the random graph generator and random

multicast group generator functions of MCRSIM c
. The simulator implements a

modi�ed version of the random graph generator described by Waxman [21]2. The

nodes in the network have an average node degree of 4. The delay constraint � is

set to 0.025 seconds which is an upper bound on the propagation delay across the

network. The delay variation constraint is initialized to 0.01 seconds. The simulations

were run using 3 variables:

1. Network Size : 40, 60, 80, and 100 nodes

2. Multicast Group Size : 5% and 10% of total network size

3. TraÆc Load : 15% and 50% network utilization

Each permutation of the variables was simulated 100 times. The results of each run

were averaged together to generate a composite score. If a run failed to generate a

multicast tree, its data was not included in the averages. The reason being that if a

multicast tree satisfying the parameters � and Æ cannot be found, the user application

will abort and not attempt to continue the multicast session.

The simulations measured the performance of the CCDVMA and CC2DVMA

algorithms as well as the DVMA, KPP, and BSMA algorithms3. The DVMA

algorithm was included since it is the forerunner of delay variation algorithms. KPP

2The modi�cations made guarantee the resulting network is connected and the minimum degree
of any node is 2.

3Descriptions of the DVMA, KPP, and BSMA can be found in Section 2

29

and BSMA were chosen as representative heuristics for the constrained Steiner tree

problem.

The �ve algorithms were compared using �ve measures.

1. Average path delay

2. Delay variation

3. Multicast tree cost

4. Percentage of simulations failing to generate a multicast tree

5. Total System Running Time

The fourth measure was included to determine the ability of an algorithm to create

a suitable tree in relation to the other algorithms. It is also important since the tree

measurements are not included in the averages when an algorithm fails to meet the

user constraints.

The Total System Running Time measure was included to do a numerical com-

parison of the actual system running time for each algorithm. These measures were

taken only for the actual time spent in the algorithm searching for a feasible multicast

tree.

30

Chapter 8

Simulation Results

The results obtained are the average case behavior characteristics of the �ve al-

gorithms. We have broken up the presentation of data into sections corresponding to

the comparison measures described in Section 7. Section 8.1 presents the average path

delays for our simulations. The delay variation comparison is in Section 8.2. Overall

tree cost results are in Section 8.3. The ability of the �ve algorithms to generate

feasible trees is presented in 8.4. Section 8.5 shows the comparison of system running

time for the algorithms. And �nally, Section 8.6 will combine these results into some

general observations.

8.1 Average Path Delays

The average path delay is calculated by averaging the delay values of the paths

from s to all members of the destination groupM . If a multicast tree is generated, this

average will always be less than �. Otherwise, at least one path in the multicast tree

must be greater than �, and this condition would cause the tree to be an infeasible

solution to the problem.

Figures 8.1 and 8.2 show the experimental results obtained for multicast groups

of size 5% and 10%, respectively. It can be seen from these �gures that the entire

DVMA family of algorithms give a better average delay than the KPP and BSMA

algorithms. Since the DVMA-based algorithms explicitly attempt to satisfy (4.2), the

31

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

40 60 80 100 120

A
ve

ra
ge

 P
at

h
D

el
ay

(s
ec

)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.1: Average Path Delay for 5% Multicast Group membership and 15% net-
work utilization

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

40 60 80 100 120

A
ve

ra
ge

 P
at

h
D

el
ay

(s
ec

)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.2: Average Path Delay for 10% Multicast Group membership and 15%
network utilization

32

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

40 60 80 100 120

A
ve

ra
ge

 P
at

h
D

el
ay

(s
ec

)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.3: Average Path Delay for 5% Multicast Group membership and 50% net-
work utilization

paths are chosen so that their delay factors fall within Æ. This means that the paths

chosen will have a tight average delay with a small statistical variance.

In Figure 8.3, the network traÆc utilization was increased to 50%. As in Figures

8.1 and 8.2, the DVMA family of algorithms performed better than the two bench-

marks. The CCDVMA algorithm did have a higher average delay than the other

two DVMA-based algorithms, but this can be attributed to selection of its initial tree

based on tree cost and not delays.

Overall, the DVMA family of algorithms performed 10-20% better in average delay

than KPP and BSMA. This means that these algorithms are suitable for solving

very tight delay bound, �, constraints.

8.2 Delay Variation

Because KPP and BSMA were not designed to satisfy the delay variation con-

straint, it is not surprising that the DVMA family of algorithms performed better

33

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

40 60 80 100 120

D
el

ay
 V

ar
ia

tio
n(

se
c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.4: Delay Variation Comparison for 5% Multicast Group membership and
15% network utilization

for this constraint. As expected, DVMA performed the best for this measure,see

Figure 8.4. CCDVMA and CC2DVMA o�er a better average case performance

than KPP and BSMA.

In Figure 8.5 and Figure 8.6, it appears that CCDVMA degrades in performance

for the delay variation constraint. However, the tree generation failure rates presented

in Section 8.4 will show that KPP and BSMA are showing statistically skewed

results due to the fact that they are generating fewer trees than the other algorithms.

This is important because these average results are only obtained from runs that

successfully generated feasible multicast trees.

On average, the DVMA family of algorithms performed well in meeting the delay

variation constraints. In isolated cases, KPP and BSMA were able to meet the

constraint, but overall performed much worse than the other algorithms.

34

0.004

0.005

0.006

0.007

0.008

0.009

0.01

40 60 80 100 120

D
el

ay
 V

ar
ia

tio
n(

se
c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.5: Delay Variation Comparison for 10% Multicast Group membership and
15% network utilization

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

0.008

40 60 80 100 120

D
el

ay
 V

ar
ia

tio
n(

se
c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.6: Delay Variation Comparison for 5% Multicast Group membership and
50% network utilization

35

10

15

20

25

30

35

40

45

50

55

60

65

40 60 80 100 120

T
re

e
C

os
t(

M
bp

s)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.7: Cost Comparison for 5% Multicast Group membership and 15% network
utilization

8.3 Cost

The cost comparison of the �ve algorithms is the primary basis for this re-

search. The data presented here shows very favorable results for CCDVMA and

CC2DVMA.

In Figure 8.7, CCDVMA and CC2DVMA generate multicast trees that have

costs that are very competitive with KPP and BSMA. In fact, for this set of ex-

perimental variables, CCDVMA actually has better cost than any of the other

algorithms. Remember that CCDVMA starts with an initial tree that is the tree of

lowest cost generated by Dijkstra's shortest path algorithm. When the CCDVMA

search algorithm runs, it only replaces tree T with Ti if it has lower cost and simply

meets the delay and delay variation constraints. This is similar to the approach used

by BSMA. The results here show that CCDVMA is performing as well as BSMA

in reducing the overall tree cost while still meeting the delay constraint.

As in Figure 8.7, Figures 8.8 and 8.9 show that CCDVMA and CC2DVMA

36

20

30

40

50

60

70

80

90

100

110

120

40 60 80 100 120

T
re

e
C

os
t(

M
bp

s)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.8: Cost Comparison for 10% Multicast Group membership and 15% network
utilization

20

40

60

80

100

120

140

160

180

40 60 80 100 120

T
re

e
C

os
t(

M
bp

s)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.9: Cost Comparison for 5% Multicast Group membership and 50% network
utilization

37

perform very well in minimizing the cost of the multicast trees. CC2DVMA, on av-

erage, has a 5-10% higher cost than CCDVMA, KPP, and BSMA. Again, CCD-

VMA is generating trees of similar cost as the two benchmark algorithms.

These cost results show that CCDVMA is a competitive solution in minimizing

the the cost of multicast trees. It should be remembered that these cost numbers for

CCDVMA include more sample points than KPP or BSMA. These means that

the average cost of CCDVMA is a better statistical average than the average cost

of the benchmarks.

8.4 Multicast Tree Generation Failure Rate

The measure of tree generation failure rate is important for two reasons. The �rst

is that if an algorithm cannot generate a feasible multicast tree for a high majority of

user constraints, the user is left in a diÆcult situation. Either the constraints must be

re-negotiated, which may take a long period of time, or the multicast session cannot

be completed and the user cannot complete the task. Neither situation is favorable.

The second reason for this measurement is to combine the results from the previous

sections.

A multicast session can fail to be completed for two reasons. Either the delay con-

straint � could not be met, or the delay variation constraint Æ could not be satis�ed.

To the user, regardless of the reason, the multicast session could not complete. The

user is generally only concerned with whether or not the session could be established.

For that reason, we incorporated the failure rate measure in our results.

Overall, DVMA had the lowest failure rate of the �ve algorithms. In Figures 8.10

and 8.12, CCDVMA had comparable failure rate values. The other three algorithms

generally had much higher failure rates. A majority of these are due to violations of

Equation 4.2. The results depicted in Figure 8.11 show that under some situations,

all �ve algorithms can have a high failure rate. This can be caused by several reasons.

The user constraints could be very tight. The network topology also has an a�ect

on the algorithms ability to meet user constraints. In general, since the CCDVBMT

problem is NP-complete, for any given network, it may be infeasible to test all

38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120

T
re

e
F

ai
lu

re
 %

Graph Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.10: Tree Generation Failure Percentage for 5% Multicast Group membership
and 15% network utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120

T
re

e
F

ai
lu

re
 %

Graph Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.11: Tree Generation Failure Percentage for 10% Multicast Group member-
ship and 15% network utilization

39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120

T
re

e
F

ai
lu

re
 %

Graph Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure 8.12: Tree Generation Failure Percentage for 5% Multicast Group membership
and 50% network utilization

possible multicast trees.

8.5 System Running Time

Ramanathan presented an algorithm that contains a control knob that allows the

algorithm to be tuned for tradeo�s between running time and tree cost [14]. Because

running time can be a factor in the usability of an algorithm, it was included in this

study as a comparative measure. We excluded the system running time numbers

for KPP and BSMA from this section. An explanation for this can be found in

Appendix C.

The numbers presented in these �gures represent the average system time each

algorithm used to calculate a multicast tree for a single network. The system time

only includes the time spent in the actual algorithm computing the multicast tree.

Figure 8.13 shows the running time of the DVMA family of algorithms. It is

not surprising that CC2DVMA has a higher running time than the other two. As

40

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

40 60 80 100 120

S
ys

te
m

 T
im

e(
se

c)

Network Size

DVMA
CCDVMA

CC2DVMA

Figure 8.13: Average Running Time for 5% Multicast Group membership and 15%
network utilization

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA 4.9 3.7 2.8 2.0
CCDVMA 4.2 3.5 2.7 1.9
CC2DVMA 5.3 4.1 3.0 2.3

Table 8.1: Average Number of Multicast Trees Generated per network for 5% Multi-
cast Group and 15% TraÆc Utilization

41

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

40 60 80 100 120

S
ys

te
m

 T
im

e(
se

c)

Network Size

DVMA
CCDVMA

CC2DVMA

Figure 8.14: Average Running Time for 10% Multicast Group membership and 15%
network utilization

explained in Section 5.4, CC2DVMA's average case complexity is the same as its

worst-case complexity. It must test every tree that it generates in order to �nd the

tree of least cost. The fact that CCDVMA performs better than DVMA can be

explained by the logic used to choose the k-shortest paths on line 2 of Figure 5.1. In

general, CCDVMA chooses less paths than DVMA during this step. This in turn

causes less trees to be tested. Similar results can be seen in Figure 8.14.

In order to make a more thorough comparison, it was necessary to determine the

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA 4.5 3.3 2.2 1.6
CCDVMA 4.2 3.0 1.9 1.6
CC2DVMA 4.7 3.5 2.4 1.9

Table 8.2: Average Number of Multicast Trees Generated per network for 10% Mul-
ticast Group and 15% TraÆc Utilization

42

reason for the di�erences in the system running time. The three algorithms compared

in this section all have the same general code
ow. The primary cause of di�erences

in system running time is the number of potential multicast trees that each algorithm

generates. Table 8.1 shows the average number of multicast trees that are generated

per simulated network. The results shown in Table 8.1 correspond to the system

running times graphed in Figure 8.13. It can be seen that there is a direct correlation

between these two measures. A similar comparison can be made between Figure 8.14

and Table 8.2.

8.6 Major Results

The performance of CCDVMA is encouraging. The results of this research show

that CCDVMA is adept at balancing the user constraints with the demands of the

underlying network. As the use of real-time interactive applications increases, this

ability will become increasingly more important.

Overall, CCDVMA did not consistently outperform the other algorithms in any

given measurement, though its system running time is encouraging. It did perform

well in all measures. These results show that CCDVMA is a fast heuristic for solving

the intractable CCDVBMT problem. It also scales well to larger network topologies

and still provides very good routes. None of the other algorithms used in this research

gave better overall results.

Appendix B presents additional results from this work. These results were com-

piled to verify �ndings by Rouskas and Baldine [15] concerning the average node

degree and to test varying values of the delay variation constraint Æ.

43

Chapter 9

Summary and Future Work

9.1 Summary

We have considered the problem of generating cost conscious multicast trees that

satisfy the delay and delay variation constraints imposed by the user process. The

CCDVMA heuristic that we developed exhibits good average case behavior across a

variety of network topologies. Our simulation environment was setup to model typical

multicast scenarios over high-speed networks. This allowed us to make valid compar-

isons between our new heuristics and a representative set of existing algorithms.

The results presented in Section 8 are promising. The CCDMVA heuristic o�ers

a favorable solution to the CCDVBMT problem. The average cost of its multicast

trees is comparable to that of the more established KPP and BSMA algorithms.

The average path delay results are better than those posted by BSMA andKPP and

compare favorably with DVMA. It o�ers a good balance between tree cost, average

delay, and average delay variation, while being very competitive in terms of system

running time.

We have also addressed the dynamic reorganization of multicast trees in response

to changes in the multicast group. The time complexity of these solutions is compet-

itive with those of DVMA.

TheCCDVMA heuristic is a novel strategy for addressing the constrained Steiner

tree problem. In our work, this approach has shown promise, not only in o�ering a

44

solution to the CCDVBMT problem, but doing so while exhibiting good performance

numbers.

9.2 Future Work

There are still several possibilities for the extension of our work. The delay vari-

ation constraint is still a new concept. The ability to minimize the inter-destination

delay is becoming more important as new distributed applications are developed.

Within the DVMA family of algorithms, there are still uninvestigated means of mini-

mizing the tree cost. Other constrained Steiner tree algorithms could also be modi�ed

to utilize the delay variation constraint.

This algorithm requires that each node have complete knowledge of the network.

In addition, routers in the network have no knowledge of the multicast communi-

cation. In general, routers will have up to date information about changes in the

network that will a�ect the multicast sessions. For these reasons, a next logical step

would be to develop a distributed version of this algorithm that runs on the routers.

Routers would be able to add/delete low cost paths as nodes dynamically join/leave

the multicast session. This would relieve the nodes from having to collect topology

information as well as actually knowing who is participating in the multicast group.

Some of the results of this work not presented in Section 8, but included in Ap-

pendix C, show that the system running time of the benchmark algorithms are rather

high. Additional investigation is needed to determine if this phenomenon was intro-

duced in the simulation environment or is inherent to the algorithms.

Our results suggest that it is possible that CCDVMA could be an eÆcient solu-

tion to the constrained Steiner tree problem. Additional research needs to be carried

out to explore this possibility. The preliminary results are encouraging, but not con-

clusive.

45

Bibliography

[1] S. Baase. Computer Algorithms. Addison Wesley, 1988.

[2] I. Baldine. Multicast routing with end-to-end delay and delay variation con-

straints. Master's thesis, North Carolina State University, Department of Com-

puter Science, 1995.

[3] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Inc., 1992.

[4] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269{271, 1959.

[5] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Co., New York, NY, 1979.

[6] S. L. Hakimi. Steiner's problem in graphs and its implications. Networks, pages

1:113{133, 1971.

[7] A. Koifman and S. Zabele. RAMP: A reliable adaptive multicast protocol. Pro-

ceedings of IEEE Infocom '96, pages 1442{1451, March 1996.

[8] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multi-

media communication. IEEE/ACM Transactions on Networking, 1(3):286{292,

June 1993.

[9] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta

Informatica, pages 15:141{145, 1981.

46

[10] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart

and Winston, 1976.

[11] J. Lin and S. Paul. RMTP: A reliable multicast transport protocol. Proceedings

of IEEE Infocom '96, pages 1414{1424, March 1996.

[12] M. R. Macedonia and D. P. Brutzman. Mbone provides audio and video across

the internet. IEEE Computer, 27:30{36, April 1994.

[13] S. Paul, K. K. Sabnani, and D. M. Kristol. Multicast transport protocols for high

speed networks. Proceedings of International Conference on Network Protocols,

pages 4{14, 1994.

[14] S. Ramanathan. An algorithm for multicast tree generation in networks with

asymmetric links. Proceedings of IEEE Infocom '96, pages 337{344, March 1996.

[15] G. Rouskas and I. Baldine. Multicast routing with end-to-end delay and delay

variation constraints. IEEE Journal on Selected Areas in Communications, 15(3),

April 1997.

[16] H. Salama. Multicast Routing for Real-time Communication on High-Speed Net-

works. PhD thesis, North Carolina State University, Department of Electrical

and Computer Engineering, Dec 1996.

[17] H. Salama, D. Reeves, Y. Viniotis, and T. Sheu. Comparison of multicast routing

algorithms for high-speed networks. Technical Report IBM-TR29.1930, IBM,

September 1994.

[18] H. Salama, D. Reeves, Y. Viniotis, and T. Sheu. Evaluation of multicast routing

algorithms for distributed real-time applications on high-speed networks. Pro-

ceedings of 6th IFIP Conference on High Speed Networks, pages 27{42, September

1995.

[19] H. Salama, Y. Viniotis, D. Reeves, and T. Sheu. Multicast routing algorithms

for high-speed networks. Technical Report IBM-TR29.1883, IBM, May 1994.

47

[20] J. S. Turner. New directions in communications (or which way to the information

age?). IEEE Communications Magazine, 24(10):8{15, Oct 1986.

[21] B. Waxman. Routing of multipoint connections. Journal on Selected Areas in

Communications, 6(9):1617{1622, December 1990.

[22] R. Widyono. The design and evaluation of routing algorithms for real-time

channels. Technical Report TR-94-024, University of California at Berkeley,

Department of EECS, June 1994.

[23] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A source-based algorithm for

near-optimum delay-constrained multicasting. Proceedings of IEEE Infocom '95,

pages 377{385, March 1995.

48

Appendix A

Experimental Measurements for

Variables k and l

Rouskas and Baldine stated that the natural upper bound on the parameters k

and l is the maximum number of paths of delay at most � [15]. In the development

of DVMA, arti�cial limits were imposed on these parameters. The upper bounds are

: k = 3n and l = n. However, they expected the maximum value of these parameters

to be small constants. The data presented in this section veri�es this assumption.

During the simulation phase, the maximum value and the average value of k and l

was measured. Originally, this was done to verify the �ndings dealing with the system

running time of the algorithms under test. However, it also proved that, in general,

k and l do not increase the run-time complexity of the DVMA family of algorithms.

Table A.1 shows the maximum and average value of k over the simulation run

for 5% multicast group membership and 15% traÆc utilization. The data shows that

DVMA and CCDVMA generate only a small number of potentially feasible trees.

CC2DVMA generates more trees due to its search logic.

In Table A.2, the average value of l shows that the algorithms are only able to

generate a small number of paths at line 10 in Figure 5.1. The complexity of the

algorithm on line 10 was shown to be O(ln3), so the parameter l adds very little to

the overall complexity. For CC2DVMA, the maximum value of l approaches the

upper limit of n, but on average it is still much lower than the limit.

49

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA Max 7.0 Max 7.0 Max 6.0 Max 9.0
Avg 4.9 Avg 3.7 Avg 2.8 Avg 2.0

CCDVMA Max 5.0 Max 4.0 Max 4.0 Max 2.0
Avg 4.2 Avg 3.5 Avg 2.7 Avg 1.9

CC2DVMA Max 16.0 Max 10.0 Max 9.0 Max 20.0
Avg 5.3 Avg 4.1 Avg 3.0 Avg 2.3

Table A.1: Upper limit and average values of k for 5% Multicast Group and 15%
TraÆc Utilization

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA Max 23.0 Max 32.0 Max 23.0 Max 28.0
Avg 5.1 Avg 13.3 Avg 10.1 Avg 14.5

CCDVMA Max 5.0 Max 11.0 Max 14.0 Max 20.0
Avg 3.2 Avg 10.3 Avg 9.8 Avg 13.6

CC2DVMA Max 32.0 Max 51.0 Max 73.0 Max 88.0
Avg 20.4 Avg 30.9 Avg 26.3 Avg 28.9

Table A.2: Upper limit and average values of l for 5% Multicast Group and 15%
TraÆc Utilization

50

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA Max 5.0 Max 7.0 Max 7.0 Max 11.0
Avg 4.5 Avg 3.3 Avg 2.2 Avg 1.6

CCDVMA Max 5.0 Max 4.0 Max 3.0 Max 3.0
Avg 4.2 Avg 3.0 Avg 1.9 Avg 1.6

CC2DVMA Max 18.0 Max 22.0 Max 10.0 Max 17.0
Avg 4.7 Avg 3.5 Avg 2.4 Avg 1.9

Table A.3: Upper limit and average values of k for 10% Multicast Group and 15%
TraÆc Utilization

Algorithm 40 Nodes 60 Nodes 80 Nodes 100 Nodes

DVMA Max 17.0 Max 35.0 Max 38.0 Max 29.0
Avg 4.3 Avg 11.0 Avg 12.2 Avg 9.9

CCDVMA Max 6.0 Max 13.0 Max 17.0 Max 19.0
Avg 3.0 Avg 8.8 Avg 10.2 Avg 7.8

CC2DVMA Max 38.0 Max 55.0 Max 68.0 Max 74.0
Avg 18.8 Avg 30.0 Avg 27.7 Avg 24.8

Table A.4: Upper limit and average values of l for 10% Multicast Group and 15%
TraÆc Utilization

In Tables A.3 and A.4, the average values of k and l are actually lower than those

values in Tables A.1 and A.2. We attribute this to the increase of the multicast

group size causing increased path sharing. The increase in path sharing adds more

destinations to the tree per pass of the search algorithm.

Overall, these tables show that the assumption that k and l are small constants is

a good assumption. In addition, the time complexity of the DVMA-based algorithms

does not increase because of these parameters. Another observation that can be made

from this data is that, on average, there is a small number of possible paths from the

source to any destination given the delay constraints imposed on the multicast tree.

This means that search algorithms like CCDVMA and DVMA may not have to

impose arti�cial upper limits on these parameters.

51

Appendix B

Additional Simulation Results

The following �gures show additional research �ndings. The �ndings presented

here are included to re-enforce the �ndings of Section 8. Section B.1 shows the results

of lowering the average node degree from 4 to 2.5. Section B.2 provides the results of

raising the delay variation constraint from 0.01 seconds to 0.02 seconds.

B.1 Results for Node Degree 2.5

It was found that the DVMA family of algorithms performed better as the average

node degree increased [15, 2]. We attempt to verify these �ndings by running a set

of simulations with the average node degree reduced to 2.5.

It should be noted that the trend today in high-speed networks is towards a

high average node degree. These results do show that as the node degree decreases,

the performance of all the algorithms converges. This is to be expected. As the

node degree decreases, the number of possible paths decreases, thus limiting the path

choices that can be made.

The following �gures verify that the performance of the DVMA-based algorithms

deteriorate as the node degree decreases. However, it should be noted that KPP and

BSMA fail to generate any multicast trees for any of the 100 node networks.

52

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

40 60 80 100 120

A
ve

ra
ge

 P
at

h
D

el
ay

(s
ec

)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.1: Average Path Delay for 5% Multicast Group membership, 15% network
utilization, and Average Node Degree = 2.5

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

0.008

0.0085

40 60 80 100 120

D
el

ay
 V

ar
ia

tio
n(

se
c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.2: Delay Variation Comparison for 5% Multicast Group membership, 15%
network utilization, and Average Node Degree = 2.5

53

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40 60 80 100 120

T
re

e
C

os
t(

M
bp

s)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.3: Cost Comparison for 5% Multicast Group membership, 15% network
utilization, and Average Node Degree = 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120

T
re

e
F

ai
lu

re
 %

Graph Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.4: Tree Generation Failure % for 5% Multicast Group membership, 15%
network utilization, and Average Node Degree = 2.5

54

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

40 60 80 100 120

A
ve

ra
ge

 P
at

h
D

el
ay

(s
ec

)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.5: Average Path Delay for 10% Multicast Group membership, 50% network
utilization, and Delay Variation = 0.02 seconds

B.2 Results for Delay Variation Constraint 0.02

When a feasible tree is unobtainable with the current user constraints, the �rst

course of action would be to re-negotiate the constraints. The following �gures show

the results of increasing the delay variation constraint from 0.01 seconds to 0.02

seconds.

In Figure B.6, it can be seen that as the delay variation constraint is loosened, the

average delay variation for all �ve algorithms begin to converge. This result is not

that surprising. The benchmark algorithms, KPP and BSMA, will bene�t from the

looser constraint and have a better opportunity to meet the delay variation target.

With the DVMA-base algorithms, the looser constraint makes it more likely that the

initial tree T0 will satisfy (4.1) and (4.2). The selection of T0 will return to the user

the tree of least cost or least delay and this tree will be more similar to the tree

returned by KPP or BSMA.

It should be noted that in Figure B.7 the average tree cost for DVMA is much

55

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

40 60 80 100 120

D
el

ay
 V

ar
ia

tio
n(

se
c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.6: Delay Variation Comparison for 10% Multicast Group membership, 50%
network utilization, and Delay Variation = 0.02 seconds

600

800

1000

1200

1400

1600

1800

2000

2200

40 60 80 100 120

T
re

e
C

os
t(

M
bp

s)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure B.7: Cost Comparison for 10% Multicast Group membership, 50% network
utilization, and Delay Variation = 0.02 seconds

56

closer to the costs of the benchmark algorithms. This could warrant further investi-

gation since DVMA never attempts to minimize the tree cost. The path selection

mechanism could be selecting good delay paths which have correspondingly low uti-

lization components.

57

Appendix C

System Running Time Results for

BSMA and KPP

In the process of measuring the performance of the �ve algorithms, we found that

KPP and BSMA were using an unusually high amount of CPU time. Figures C.1

and C.2 show that the system running time of KPP and BSMA are signi�cantly

higher than the other three.

One possible cause could be the implementation di�erences of the algorithms.

The MCRSIM package is implemented in C++. The DVMA algorithms were im-

plemented mostly in C and integrated into the simulator package. It is not clear

how much of the system time measurement is due to the added overhead of C++.

One piece of follow-on research will try to eliminate the variable of C versus C++

implementation and get a more accurate comparison of the running time of the �ve

algorithm.

It is also possible that BSMA could be exhibiting this performance due to the

number of possible replacement superedges it has to choose from. The work done by

Salama [16] obtained system running time numbers on graphs with a small number of

nodes (� 20). Our work takes these measures over much larger graphs. The increase

in the number of nodes introduces more possible paths from a source to a destination.

DVMA and CCDVMA limit the number of paths they can choose from to 3n, but

the results in Appendix A show that this maximum number is never a factor. BSMA

58

0

5

10

15

20

25

40 60 80 100 120

S
ys

te
m

 T
im

e(
se

c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure C.1: System Running Time for 5% Multicast Group membership and 15%
network utilization

could be generating more replacement edges than DVMA and CCDVMA as the

network size increases.

As far as KPP is concerned, the problem may be related to the delay constraint

�. When KPP computes its closure graph, the fact that � is not an integer could

have an impact on the running time. In the description of KPP [8], it is stated that

an assumption is made that � is integer. If the assumption is false, the computation

of the constrained all-pairs could take a signi�cantly longer amount of time.

59

0

5

10

15

20

25

40 60 80 100 120

S
ys

te
m

 T
im

e(
se

c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure C.2: System Running Time for 10% Multicast Group membership and 15%
network utilization

0

0.05

0.1

0.15

0.2

0.25

10 15 20 25 30

S
ys

te
m

 T
im

e(
se

c)

Network Size

BSMA
KPP

DVMA
CCDVMA

CC2DVMA

Figure C.3: System Running Time for 5% Multicast Group membership and 15%
network utilization on smaller networks

