
ABSTRACT

BENGERI, SUDHINDRA S. Di�erentiated Services Support for the Helios Optical Access
Network Testbed. (Under the direction of Dr. George Rouskas.)

We consider the problem of scheduling a di�erentiated mix of (IP Di�Serv type)

traÆc in a broadcast single hop WDM network. Tunability is provided only at one end,

namely at the transmitter. Our objective is to design transmission schedules to sched-

ule a mix of guaranteed service and best-e�ort traÆc, by allocating the excess bandwidth

to best-e�ort traÆc in a max-min fair manner. We consider scheduling algorithms for

both systems with negligible transceiver tuning latency and systems with non-negligible

transceiver tuning latency. We map the optimal preemptive Open-Shop scheduling algo-

rithm to schedule packets in a system with negligible transceiver tuning latency and use

the nonpreemtive OSTL scheduling algorithm for systems with non-negligible transceiver

tuning latency. We propose mechanisms for the allocation of slots to best e�ort traÆc for

the preemptive and non-preemptive scheduling algorithms. We present the results of exten-

sive simulation study that evaluate the performance of the best e�ort allocation schemes

in terms of channel throughput and schedule lengths. We identify the e�ect of schedule

lengths and percentage reservations for guaranteed traÆc on scheduling delay, and develop

heuristics that e�ectively decouple the e�ect of schedule lengths on scheduling delay. We

then present the architecture of the highly extensible WDM simulator component we im-

plemented over ns-2. The component can be used to study the performance of collision-free

scheduling algorithms and queuing mechanisms on a TT-FR broadcast single hop WDM

network. Finally, we use this simulator component to study the e�ects of di�erent system

parameters, such as slot demands and reservations on scheduling delay, and delay jitter.

DIFFERENTIATED SERVICES SUPPORT FOR THE

HELIOS OPTICAL ACCESS NETWORK TESTBED

by

Sudhindra Suresh Bengeri

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial ful�llment of the
requirements for the Degree of

Master of Science

Computer Networking

Raleigh

2001

APPROVED BY:

Chair of Advisory Committee

iii

BIOGRAPHY

Sudhindra Suresh Bengeri was born in Belgaum, India on May 10th, 1976. He received his

bachelors degree in Computer Science and Engineering from the department of Computer

Science at Gogte Institute of Technology, Belgaum, India in 1993. He was with IBM Global

Services India from 1997 to 1999 where he was part of the systems software group. He joined

the department of Computer Science at the North Carolina State University, Raleigh, NC in

fall of 1999. He is currently working towards completion of his master's degree in Computer

Networking. He is a member of Upsilon Pi Epsilon (UPE), an International honor society

for the computer sciences.

iv

ACKNOWLEDGEMENTS

I would like to thank my parents for everything that they have done for my upbringing and

encouraging me to pursue higher education. My �ancee, Shilpa, has been a constant source

of motivation from the time I took GRE, through the application process and during my

masters. I thank for having stood by me in every decision I have made.

I would like to thank Dr. George N. Rouskas for having given me the opportunity for con-

ducting research in the interesting �eld of WDM access networks, under his able guidance.

This thesis would not have be possible without his continual support and advice.

I would like to thank Dr. Harry Perros and Dr. Fornaro for serving on my thesis committee.

I would also like to thank Dr. Carla Savage for her suggestions for eÆcient implementation

of the Open-Shop scheduling algorithm.

I thank Vikram Pendharkar for taking time to review my thesis. Last, but not the least I

would like to take this opportunity to acknowledge my sisters and Shilpa's parents for their

support.

v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Broadcast-and-Select Single-Hop WDM Optical Networks 1
1.2 Di�erentiated Services . 2
1.3 Motivation . 3
1.4 Thesis Organization . 3

2 Background and Related Work 5

2.1 Algorithm design parameters . 5
2.2 Scheduling Algorithms . 9

2.2.1 Bandwidth Guarantee . 11
2.2.2 Delay Guarantee . 14

3 System Model and Problem Statement 23

3.1 Network Model . 23
3.2 Problem Statement . 26

4 Scheduling Algorithms 28

4.1 Preemptive Open-Shop scheduling algorithm 29
4.2 Best-e�ort traÆc allocation for OS . 33
4.3 Non-preemptive Open-Shop with tuning latencies 35
4.4 Best-e�ort traÆc allocation for OSTL . 38
4.5 Simulation Study . 41

5 Optimization Heuristics 50

5.1 Channel Decomposition . 51

6 Simulator Implementation 53

6.1 Introduction to ns-2 . 53
6.2 Nortel's Di�serv implementation in ns-2 . 54
6.3 Design and Implementation of the WDM Scheduler 55

vi

7 Numerical Results 68

8 Summary and Future Research 81

8.1 Summary . 81
8.2 Future Research . 81

Bibliography 83

vii

List of Figures

3.1 A Broadcast-and-select WDM network . 24

4.1 Bipartite graph as constructed by the preemptive open-shop algorithm . . . 32
4.2 Preemptive open-shop schedule without best e�ort traÆc, for N = 5 and C = 3 32
4.3 Algorithm: Best-e�ort allocation for preemptive open-shop algorithm (BE-OS) 33
4.4 Preemptive open-shop schedule with best e�ort traÆc, for N = 5 and C = 3 35
4.5 Nonpreemptive OSTL schedule without best e�ort traÆc, for N = 5, C = 3

and � = 2 . 37
4.6 Nonpreemptive OSTL schedule with best e�ort traÆc, for N = 5, C = 3 and

� = 2 . 40
4.7 Nonpreemptive OSTL schedule with best e�ort traÆc allocation by BE-OS,

for N = 5, C = 3 and � = 2 . 40
4.8 Algorithm: Best e�ort allocation for the nonpreemptive OSTL algorithm

(BE-OSTL) . 45
4.9 Channel throughput with BEOS best e�ort allocation, for C=6 (values plot-

ted with 95% con�dence interval) . 46
4.10 Channel throughput with BEOS best e�ort allocation, for C=24 (values plot-

ted with 95% con�dence interval) . 46
4.11 Channel throughput with BEOSTL best e�ort allocation, for C=6 (values

plotted with 95% con�dence interval) . 47
4.12 Percentage increase in schedule length after BEOSTL best e�ort allocation,

for C=6 (values plotted with 95% con�dence interval) 47
4.13 Channel throughput with BEOSTL best e�ort allocation, for C=24 (values

plotted with 95% con�dence interval) . 48
4.14 Percentage increase in schedule length after BEOSTL best e�ort allocation,

for C=24 (values plotted with 95% con�dence interval) 48
4.15 Channel throughput comparisions with OSTL scheduling algorithm, for C=24

(values plotted with 95% con�dence interval) 49
4.16 Schedule length comparisions with OSTL scheduling algorithm, for C=24

(values plotted with 95% con�dence interval) 49

5.1 E�ect of scheduling bursts of packets on scheduling delay 50
5.2 Channel Decomposition . 52

viii

5.3 Decomposition of a 12-slot schedule . 52

6.1 Simulation architecture . 57
6.2 Components of a Unidirectional Link in ns-2 59
6.3 Class hierarchy of a WDM Queue . 61
6.4 Class hierarchy of the optimal scheduler . 64

7.1 Average scheduling delay comparision for non-backlogged and backlogged
traÆc on a 1 Gbps channel with 200 nodes, for a reservation of 40% 71

7.2 Delay Jitter comparision for non-backlogged and backlogged traÆc on a 1
Gbps channel with 200 nodes, for a reservation of 40% 71

7.3 Standard deviation in scheduling delay for non-backlogged and backlogged
traÆc on a 1 Gbps channel with 200 nodes, for a reservation of 40% 72

7.4 Average scheduling delay comparision for committed burst size of 6, 12 pack-
ets on a 1 Gbps channel with 200 nodes, for 10%� 40% reservation 73

7.5 Delay Jitter comparision for committed burst size of 6, 12 packets on a 1
Gbps channel with 200 nodes, for 10%� 40% reservation 74

7.6 Standard deviation in scheduling delayfor committed burst size of 6, 12 pack-
ets on a 1 Gbps channel with 200 nodes, for 10%� 40% reservation 74

7.7 Average scheduling delay comparision with and without channel decomposi-
tion on a 1 Gbps channel with 200 nodes, for a reservation of 40% 75

7.8 Delay Jitter comparision with and without channel decomposition on a 1
Gbps channel with 200 nodes, for a reservation of 40% 76

7.9 Standard deviation in scheduling delay with and without channel decompo-
sition on a 1 Gbps channel with 200 nodes, for a reservation of 40% 76

7.10 Average scheduling delay comparision with and without channel decompo-
sition on a 1 Gbps channel with 200 nodes, for committed burst size of 12
packets . 77

7.11 Delay Jitter comparision with and without channel decomposition on a 1
Gbps channel with 200 nodes, for committed burst size of 12 packets 78

7.12 Standard deviation in scheduling delay with and without channel decompo-
sition on a 1 Gbps channel with 200 nodes, for committed burst size of 12
packets . 78

7.13 Average scheduling delay comparision with and without channel decomposi-
tion on a 10 Gbps channel with 200 nodes, for committed burst size of 12
packets . 79

7.14 Delay Jitter comparision with and without channel decomposition on a 10
Gbps channel with 200 nodes, for committed burst size of 12 packets 80

7.15 Standard deviation in scheduling delay with and without channel decompo-
sition on a 10 Gbps channel with 200 nodes, for committed burst size of 12
packets . 80

ix

List of Tables

2.1 Classi�cation of algorithms providing bandwidth guarantee. 10
2.2 Classi�cation of algorithms providing timing guarantee. 10

4.1 Collapsed demand matrix for three processors and �ve jobs 31
4.2 Combined traÆc matrix, with best e�ort slots allocated by BE-OS 35

7.1 Reservations per node per cycle and resulting schedule lengths 69
7.2 Simulation scenarios. 70

1

Chapter 1

Introduction

1.1 Broadcast-and-Select Single-HopWDMOptical Networks

Technological advances have dramatically increased electronic processing speeds,

however so has the transmission capacity of optical systems. Inevitably, network capac-

ity will always be limited by the electronic bottleneck. Wavelength division multiplexing

(WDM) eases this opto-electronic speed mismatch by partitioning the enormous optical

bandwidth into multiple channels. Each channel carries traÆc at data-rate of the interface

electronics, possibly at peak electronic speed. By allowing multiple WDM channels to co-

exist on a single �ber, one can tap into the huge �ber bandwidth, with the corresponding

challenge being design and development of appropriate network architectures, protocols and

algorithms. Taking advantage of the emerging optical networking technologies [9], many

researchers, both in academia and industry, have contributed signi�cantly to the theoretical

and practical aspects of realization of WDM networks. WDM transmission systems with

transmission capacity exceeding Tbps have been demonstrated; and systems supporting

hundreds of Gbps are becoming commercially available. A number of experimental proto-

types have been (Monet [5], Rainbow-II [4]) and are currently being developed (Helios [2],

ONRAMP [3], Hornet, SuperNet, NGI [8]).

WDM network architecture of interest in this thesis is the Broadcast-and-select

single-hop architecture [10], which is all-optical in nature, i.e., any information transmitted

into the medium remains in the optical form until it reaches its destination. There are no

opto-electronic conversions and no bu�ering/queueing inside the network.

The traditional application for WDM systems is the transport of SONET/SDH

2

signals generated by Add Drop Multiplexers (ADMs). Due to the increase in data traÆc

a large portion of this traÆc is carried over IP, ATM or Frame relay. SONET/SDH were

developed for supporting voice traÆc, and are not ideally suited to meet the demands of

data traÆc. Hence a lot of research is directed towards transmitting packets directly over

WDM, from design of such networks [11] to eÆcient packet scheduling.

1.2 Di�erentiated Services

ATM was designed with a view to provide services such as teleconferencing, video

on demand(VOD), in addition to voice services, all over a single network. Di�erent classes

of service were designed to support di�erent packet loss and delay requirements. In the

traditional IP networks, however, all user packets compete equally for the network resources.

With the usage and popularity of IP networks, a signi�cant burden is placed on the limited

network resources, such as bandwidth and bu�er space, resulting in heavy congestion. Such

congestion does not encourage adoption of IP networks as transport mechanisms for real-

time and mission critical applications. Di�erentiated Services [13] or Di�serv, is an IP QoS

architecture based on packet-marking that allows packets to be prioritized according to user

requirements (the reader is referred to [17] for a framework of current IP QoS).

Di�erentiated services enhancements to the Internet protocol are intended to en-

able scalable service discrimination in the Internet without the need for per-
ow state and

signaling at every hop. The Di�erentiated services architecture [13] achieves scalability by

implementing complex classi�cation and conditioning functions only at network boundary

nodes, and by applying per-hop behaviors to aggregates of traÆc which have been appro-

priately marked using the DS �eld. The previous statement uses the terms per-hop behavior

(PHB) and DS �eld [12] which are the two building blocks of this architecture, using which

services can be built. PHB denotes a combination of forwarding, classi�cation, scheduling

and drop behaviors at each hop. PHB is primarily a description of desired behavior on a

relatively high abstraction level, and should allow the construction of predictable services

[16]. The DS �eld supersedes the existing de�nitions of the IPv4 TOS octet and the IPv6

TraÆc Class octet. Six bits of the DS �eld are used as a codepoint (DSCP) to select the

per-hop behavior a packet experiences at each node.

The de�nitions of PHBs is a critical part of the work of the Di�serv working group.

An Expedited Forwarding (EF) PHB [14] can be used to build a low loss, low latency, low

3

jitter, assured bandwidth, end-to-end service through DS domains. Assured Forwarding

(AF) PHB [15] group is a means for o�ering di�erent levels of forwarding assurances for

IP packets. Four AF classes are de�ned, where each AF class is in each DS node allocated

a certain amount of forwarding resources (bu�er space and bandwidth). Within each AF

class IP packets are marked with one of three possible drop precedence values. In case

of congestion, the drop precedence of a packet determines the relative importance of the

packet within the AF class.

1.3 Motivation

To honor ATM CoS/IP QoS parameters appropriate end-to-end mechanisms need

to be devised, that include mechanisms in the backbone and access networks. Until re-

cently research in single-hop packet scheduling algorithms primarily focused on minimizing

average delay and increasing network throughput [28]. These algorithms could not guaran-

tee Quality-of-Service parameters such as bandwidth guarantee, cell transfer delay and cell

delay variation. Scheduling algorithms should guarantee bandwidth or delay requirements

of traÆc classes and should be able to distribute excess bandwidth to best e�ort traÆc

in a max-min fair manner. At the same time, scheduling algorithms should make eÆcient

utilization of system resources and yield high channel throughput.

The primary motivation for this thesis is to provide the basis for Di�erentiated

Services support for the Helios [2] testbed. Helios is a DARPA ITO sponsored research

project, and is a part of DARPA's NGI program [1]. In this thesis we explore scheduling

algorithms that can be used to schedule IP Di�serv type traÆc. We desgin mechanisms for

eÆcient distribution of excess bandwidth to best-e�ort traÆc. We also identify parameters

that a�ect the scheduling delay and propose heuristics that reduce average delay and delay

jitter.

1.4 Thesis Organization

The thesis is organized as follows. In Chapter 2 we identify the parameters af-

fecting the design of packet scheduling algorithms that provide either bandwidth or delay

guarantees. We then, survey the algorithms proposed in literature and classify them. In

Chapter 3 we describe the system model on which this thesis is based, and state the problem

4

that this thesis addresses. In Chapter 4 we discuss scheduling algorithms which we use to

schedule a mix of guaranteed and best e�ort traÆc. We then propose simple mechanisms

to allocate slots to best e�ort traÆc and provide simulation results related to the channel

throughput and schedule lengths. In Chapter 5 we present heuristics that reduce variation

in delay experienced by packets being scheduled in bursts by WDM scheduling algorithms.

In Chapter 6 we present the architecture and implementation details of the WDM simulator

component we implemented on ns-2 and present some delay-related performance results in

Chapter 7. Finally we summarize our work in Chapter 8 and provide directions for future

research.

5

Chapter 2

Background and Related Work

In this chapter, we survey some of the approaches and techniques proposed in

recent publications for supporting QoS guarantees and delay-contrained communication on

local lightwave networks. We �rst identify the parameters a�ecting the design of packet

scheduling algorithms that provide either bandwidth or delay guarantees. Next, we classify

the protocols and scheduling algorithms proposed in the literature. We then explain the

important characteristics of the surveyed algorithms, and discuss their advantages and

disadvantages.

2.1 Algorithm design parameters

In a broadcst WDM network, there are three types of resources - wavelenghts,

transmitters and receivers. To transmit a packet users contend for and obtain each of these

three resources. Two packets simultaneously transmitted on the same wavelength will result

in a collision. A transmitter having permission to transmit on two or more wavelengths in

a given timeslot, results in a transmitter con
ict. And two or more packets destined to the

same receiver each on a di�erent wavelength, results in a destination con
ict. In general,

collisions of any sort decrease throughput, hence packet loss due to collisions must either be

avoided or minimized. Scheduling algorithms provide the necessary coordination between

the transmitters and receivers for successful packet transmission.

A scheduling algorithm should allocate suÆcient bandwidth to each service class

over some interval of time; real-time services should receive a bounded delay and non real-

time services should not starve for bandwidth; any excess bandwidth must be distributed

6

fairly to the best-e�ort service class. Further, a scheduling algorithm should make eÆcient

use of system resources, and yield a high channel throughput.

The design of the scheduling algorithms is strongly dependent on the underlying

assumptions regarding the architecture and parameters of the broadcast WDM network.

Di�erences in issues such as tunability characteristics, and signaling method employed re-

sult in quite disparate strategies. For the rest of this chapter we take a closer look at the

issues which can a�ect the design of the algorithms to schedule guaranteed traÆc. (These

parameters are later used for algorithm classi�cation.)

Tunability characteristics The tunability characteristics of a transceiver have a signif-

icant impact on the design of scheduling algorithms. Systems that assume tunability at

both the transmitter and the receiver are most
exible, but require additional coordination

overhead. Also tunability at both the transmitter and the receiver comes at an additional

cost. Hence most of the scheduling algorithms consider a tunable transmitter (or receiver)

and �xed receiver (or transmitter) con�guration. But these systems need to address the

problem of assignment of home channels to the �xed receivers (or transmitters), a load

balancing problem. In practice, busier nodes (e.g., web servers, routers to other networks)

might have a better performance if the scheduling algorithm has the capability to acco-

modate more than one transceiver at a node [33, 38]. The presence of additional tunable

components increases the number of packets a node can transmit/receive in a given times-

lot, hence increasing the network throughput. Multiple transceivers could also overlap the

transmitter/receiver tuning with transmission to hide long transceiver tuning time.

Tuning latency is the time required for the tunable components to tune from

one wavelength to another. While research and development in optical device technol-

ogy has considerably reduced the tuning latency of componenents, recent advances have

also increased the electronic transmission speeds. Hence depending on the packet size

and the data transmission rate, the tuning latency could still be on the order of several

packet transmission times. If faster components or larger packet transmission times are

assumed, the tuning latency could be considered negligibile compared to the length of a

timeslot [31, 35, 33, 41, 43], and can be accounted for by having appropriate guard bands

around the packet transmission time within each slot. In this case simpler non-preemptive

algorithms could be employed that yield an optimal schedule length. If the tuning latency

is large, then including it in the slot time increases average packet delay and reduces the

7

network throughput, e.g., if the tuning time is equal to the packet transmission time and is

considered part of the slot time, e�ectively only 50% of the available bandwidth is utilized.

Algorithms that consider arbitrary tuning latencies are quite complex, and we did not come

across a algorithm that solves this problem explicitly ([38] requires only moderate tuning

speeds, however the algorithm does not operate in the time-slotted fashion).

Bandwidth allocation The media access control protocols proposed for single hopWDMA

based optical networks can be broadly classi�ed into reservation based, preallocation based

and a form of node polling.

Preallocation based techniques pre-assign the channels to the nodes either for data

transmission or for data reception. The channel which a node uses to transmit or receive

data is prespeci�ed using time division multiple access (TDMA) or its variants [36, 41]. The

advantages of this technique are no control overhead, low per-packet processing overhead,

and no collisions during control/data packet transmission (and hence higher throughput

can be achieved). However, it cannot accomodate dynamic allocation of resources based on

setup/clear requests.

Reservation based techniques could either employ in-band or out-of-band signal-

ing. Out-of-band signaling techniques designate one or more wavelength channels as the

control channels and use them to reserve/coordinate access on the remaining data chan-

nels for data transmission [31, 32, 35, 33, 37, 43]. The control channel could also be used

for other functions including, but not limited to, new node registration/initialization, net-

work management & monitoring, and global clock synchronization. Separate �xed-tuned

transceiver(s) are employed for communication over the control channel. The control chan-

nel(s) and the transceiver(s) cannot be used for data transmission and attribute towards

the control overhead. In case of in-band signaling, control packets are sent over the same

channels used for data [29]. In-band signaling has the advantages of signi�cantly reduced

control overhead, in that control channel and its associated transceivers are not required,

and it enjoys all the other advantages of a reservation-based scheme.

From the Node polling class, token passing is a common scheme [38, 39]. Token

passing protocols are characterized by algorithmic simplicity, collisionless nature, and ease

of modi�cation. However such schemes, in general, do not yield high throughput.

Centralized vs. Distributed architecture In a distributed architecture each node runs

8

an identical copy of the scheduling algorithm and the reservation scheme distributes the con-

trol information, queue size and destination, required to all the nodes [31, 37, 38, 39, 41, 43].

The distributed architecture is scalable and does not have a single point of failure. However,

it assumes that all the nodes in the network have the required processing power to compute

the schedule. In the centralized architecture, all the nodes share queue length and other

traÆc control information with a central scheduler. The scheduler computes the schedule

periodically and then distributes it to all the nodes in the network [32, 35, 33, 36, 40]. The

scheduler communicates with the nodes via a dedicated control channel, and vice versa,

hence two control channels are required. Because of the control channel delays, a newly

arrived packet must wait until its presence is reported to the scheduler, the scheduler com-

putes the new schedule and disseminates the schedule to all the nodes. The centralized

scheme suits well for networks with smaller propagation delays, whereas the distributed

algorithm is more suitable for networks with larger propagation delays.

Scheduling slot-by-slot vs. Scheduling a cycle Schedulers which schedule packets on a

slot-by-slot basis, run the scheduling algorithm every slot time [32, 35, 43]. Hence simple al-

gorithms need to be designed to keep the running time of each iteration low. This normally

results in a local maximum and such algorithms may not achieve optimal performance.

However, such scheduling algorithms yield schedules that reduce average packet delay, i.e.,

better response times. Also when such schedulers are used in the centralized architecture,

they operate in a pipelined fashion to mask the propagation delay [35]. Schedulers which

schedule packets in a cycle, collect queue length information at each of the nodes and ex-

ecute the scheduling algorithm that tries to reduce the schedule length and the average

packet delay [31, 36, 37, 41]. The running time of such algorithms is considerably high, but

may yield schedules that have close to optimal schedule lengths.

Unit of fairness Bandwidth reservations could be granted to individual message streams

(or virtual circuits) or to groups of packets belonging to a particular traÆc class (i.e., class-

based QoS guarantees). In order to satisfy per-VC bandwidth and delay guarantees, state

information needs to be stored on a per-VC basis, and also each VC needs to have its own

queue at its source node [35, 33, 36, 37]. However, it facilitates isolation of VCs from each

other. Algorithms based on VCs [34] are better suited to carry ATM-style traÆc. Algo-

rithms that provide real-time guarantees are based on individual message streams [36, 37].

9

Algorithms that provide class-based QoS guarantees schedule aggregated message streams,

to satisfy the bandwidth and delay requirements of each class [31, 32, 41, 43]. In order to

support QoS, r di�erent queues for each destination are maintained at each node, where

each queue corresponds to a di�erent QoS class. Such algorithms are better suited to pro-

vide IP Di�Serv-like QoS.

Need of higher level module for policing traÆc The problem of providing guaranteed

performance service to application streams (VCs/QoS classes) is tied to three key issues: 1)

admission control of the application streams; 2) characterization of the application streams

and policing the traÆc; and 3) eÆcient scheduling algorithms to manage the messages'

transmissions and multiplexing. The design of the scheduling algorithm could assume the

presence of any combination of admission control, traÆc policers and shapers. The schedul-

ing algorithms proposed in [35, 34, 33] require only admission control to test schedulability

of the admitted virtual circuits. The algorithm services VCs such that every user gets the

same fair share or gets their assigned weighted share, thus obviating the need of a policer

and a shaper. However, most scheduling algorithms also assume the presence of a meter

that measures incoming traÆc and matches it against the traÆc pro�le set up during ad-

mission control. The output of the meter then serves as an input to the markers, policers

and shapers.

2.2 Scheduling Algorithms

Scheduling algorithms that provide QoS guarantees can be broadly classi�ed as

those that provide bandwidth guarantees and those that speci�cally deal with delay-constrained

traÆc.

1. Bandwidth guarantee. The algorithms providing bandwidth guarantees are nor-

mally formulated as Matrix clearing problems. The traÆc pattern is formulated as

a traÆc matrix, whose (i,j) entry represents the traÆc load from node i to node j.

This traÆc load may be considered actual transmission requests or queue lengths or

desired transimission rates. The problem then becomes producing schedules to clear

the matrix - after each timeslot, some traÆc matrix entries are decreased correspond-

ing to transmissions in that timeslot, and this proceeds timeslot by timeslot until the

matrix contains all zeros, i.e., it is cleared. The research in these algorithms focuses

10

Schedule Bandwidth Unit of Bandwidth Guarantee
Computation Allocation fairness Reference Node Structure

per VC [33] CC-TT�FT-TR�FR
Centralized Reservation [35] CC-TTFT-TRFR

QoS class [32] TT-FR/FT-TR

Table 2.1: Classi�cation of algorithms providing bandwidth guarantee.

Schedule Bandwidth Unit of Timing guarantee
Computation Allocation fairness Reference Node Structure

Centralized Preallocation Message
streams [36] TT-FR

Preallocation QoS class [41] FT-TR
Individual

Reservation messages [30] CC-TTFT-TRFR
Distributed Message

streams [31, 37] CC-TTFT-TRFR
TraÆc class [39] FTC-FRC

Token Passing Message
streams [38] CC-TT�FT-FR�FR

Table 2.2: Classi�cation of algorithms providing timing guarantee.

on minmizing the average delay, reducing the call blocking probability, increasing the

user accessible bandwidth, or, increasing the network throughput [31, 32, 35, 34, 33].

2. Delay guarantee. These algorithms support delay-constrained communication for

messages with delivery deadlines for embedded real-time systems or for interactive dis-

tributed services. The algorithms in this class schedule packet transmissions with the

objective of meeting message deadlines. Some of the algorithms provide deterministic

guarantees [36, 37, 41] and others are mainly targeted for soft real-time applications

[38, 39, 30].

Both approaches implicitly guarantee the other factor to some extent, for instance,

algorithms that guarantee bandwidth requirements for an application stream do it over an

interval of time hence providing soft-real-time guarantees. Also di�erent classes of service

could be designed with each class scheduled such that each class experiences di�erent delay

11

and bandwidth characteristics. Similarly algorithms designed to provide delay guarantees

indirectly also provide bandwidth guarantees by allocating a given number of slots, to

an application stream, every period. The tables 2.2 and 2.2 classify the algorithms being

surveyed in this paper on some of the criteria discussed in section 2.1 and the above discussed

algorithm classi�cation.

2.2.1 Bandwidth Guarantee

[33, 35] form the bulk of work that has been carried out in the �eld of scheduling

algorithms that provide bandwidth guarantees. All the algorithms proposed follow the

greedy approach of algorithm design, and hence are easy to implement but result only in

local maximum.

[33] proposes a centralized scheduling mechanism that provides a minimum band-

width guarantee plus best-e�ort fair access to excess bandwidth. [33] considers a network

of N nodes interconnected by a passive star coupler that supports m wavelengths. Each

node can have Ti tunable transmitter and Ri tunable receivers. And a pair of transceivers

�xed-tuned to the control channel (a CC-TTTiFT-TRRiFR con�guration). Data are trans-

mitted in �xed-size cells, where one cell can be sent in one timeslot and tuning latency is

assumed to be negligible compared to the length of a timeslot. All the nodes periodically

report their VCs' queue lengths to the scheduler.

[33] de�nes a set of VC transmission rates to be max-min fair if and only if every

VC has one (or more) bottleneck resource. [33] proposes a basic scheduling algorithm that

achieves max-min fair allocation of resources without any minimum bandwidth guarantees

and then extends it to handle minimum bandwidth guarantees. The basic scheduling algo-

rithm keeps track of how many cells each VC has sent so far, in a state variable called the

VC's Usage. During each timeslot the algorithm considers each backlogged VC in increas-

ing Usage order, and the VC is assigned the timeslot if it does not violate the transmitter,

receiver and wavelength constraints. Whenever a timeslot is assigned, that VC's Usage is

incremented by one. Each VC is considered only once, at which point it is either added

to the transmitting set or skipped, hence the resulting algorithm is simple and fast. The

authors also suggest the data structures that facilitate eÆcient implementation of the basic

scheduling algorithm.

[33] assumes that the guaranteed rates of VCs, and the resources used to support

12

those transmissions are exempt from fairness consideration. The excess resources are shared

in a max-min fair manner. The guaranteed bandwidth (GBW) algorithm maintains a Credit

variable with each VC. If a VC has a guaranteed rate of g cells/time slot, then its Credit

variable is incremented by g every timeslot. VCs are sorted by amount of excess bandwidth

it has used beyond its GBW (ExcessUsage = Usage � bCreditc). The algorithm tries to

schedule VCs in a greedy fashion in increasing ExcessUsage order. [33] proves that the

algorithm respects 50% bandwidth reservation.

[35] proposes a class of algorithms called maximal weighted matching algorithms to

choose VCs for transmission based on their bandwidth reservations. [35] considers a similar

system model as described above ([33]), except that each node is assumed to have only

one pair of tunable transceivers and a pair of �xed tuned transceiver (a CC-TTFT-TRFR

con�guration). The WDM broadcast network is modeled as a bipartite graph, with the

set of source nodes U and the set of destination nodes V forming the two partite sets and

every edge e 2 E represents a VC from some u 2 U to some v 2 V . An m-matching is

a matching with m or fewer edges. An m-matching for the bipartite graph representation

satis�es the transmitter, receiver and wavelength constraints. A numeric weight w(e) is

associated with each edge e, which represents the priority assigned to the corresponding

VC. A transmission schedule is then obtained by choosing a maximal weighted m-matching

every timeslot. [35] has proposed a simple algorithm called the central queue (CQ) algorithm

for computing maximal weighted m-matching. The algorithm considers edges in decreasing

order of weights, selecting edges that form an m-matching. [35] then proposes di�erent

weight assignment schemes and their variations.

In the basic Credit-Weighted Algorithm (CWA) each VC is given gf (its bandwidth

reservation in cells/timeslot) credits each timeslot. The total amount of credits accumulated

by a VC up to time t represent its reserved share up to that time. When a VC transmits

a cell its credit account is decremented by one. (Cf (t) denotes the, not yet spent, credits

of a VC at time t.) The CWA uses Cf (t) as edge weights. The CWA assigns edge weights

only to backlogged VCs with positive Cf (t). Hence the CWA is not \work-conserving".

The CWA cannot bind credits for bursty traÆc, in that, idle VCs accumulate

credits and hog resources when they become backlogged again. Such behavior is undesirable

since it a�ects the cell delay and delay jitter of other well-behaving VCs. The Bucket-Credit

Weighted Algorithm (BCWA) associates a bucket size parameter, Bf , with each VC. An

idle VC can accumulate a maximum of Bf credits before it becomes backlogged again. The

13

bucket size parameter hence restricts the amount of resources bursty sources can acquire

after a silent period. Thus reducing its e�ect on other well-behaved VCs.

The BCWA works well for bursty traÆc, its main disadvantage is that VCs may

lose credits and therefore deviate from the \ideal" throughput guarantee. The Validated

Queue Algorithm (VQA) uses the quantity V Qf (t) = min(Cf (t); Qf (t)) as edge weights,

where Qf (t) denotes the queue length of VC f at time t. The weights V Qf (t), called the

validated queue lengths, count the number of queued cells that are eligible for transmission.

By de�nition, V Qf (t) does not allow idle VCs to accumulate more edge weight, hence

reducing the hogging behavior of bursty traÆc without the use of buckets. Also the V Qf (t)

term encapsulates a credit term and a queue length term, hence any bound on V Qf (t)

simultaneously acts as a credit bound for overloading VCs, and a queue length bound on

underloading VCs.

The CWA, BCWA and VQA algorithms allocate VCs to timeslots according to

their bandwidth reservations, and since best-e�ort VCs have a gf = 0 such VCs never get

scheduled. Hence explicit mechanisms have been proposed for fair sharing of unreserved

bandwidth.

The Two Phase Usage Weighted Algorithm (UWA) operates in two phases. In the

�rst phase, the algorithm runs the CWA/BCWA/VQA to produce a matching X. If the

jXj < m the algorithm runs the basic scheduling algorithm, presented in [33] (discussed

above), to �ll up the transmission schedule by assigning timeslots to best-e�ort VCs.

The Usage-Credit Weighted Algorithm (UCWA) combines (B)CWA and UWA into

a single pass algorithm. The UCWA assigns weights according to the di�erence Df = Cf �

Uf , the di�erence in the credit accumulated by the VC and its usage of the excess bandwidth.

The UCWA is a \work-conserving" version of (B)CWA, in that, it considers edges with

nonpositive weights (which represent VCs that have been assigned bandwidth in excess of

their guaranteed bandwidth or VCs with no guaranteed bandwidth) for transmission.

The basic scheduling algorithm and the GBW algorithm proposed in [33] can

accomodate variable number of transmitters and receivers at a node. However [33] does

not give a speci�ed delay bound. [35] proves that the CWA and BCWA support 50% of

bandwidth reservations, i.e., if the total amount of bandwidth reservation is less than 50%

then all the VCs are guaranteed to receive their requested bandwidth minus a constant

credit bound (i.e., Cf (t) < Bc for all f). [35] also provide a delay bound which is a function

of the constant credit bound.

14

2.2.2 Delay Guarantee

For the rest of this section we discuss the various approaches proposed in literature

to provide timing guarantees for delay constrained communication.

Preallocation-based Algorithms

[36] proposes a preallocation-based algorithm for providing deterministic delay

guarantees for message transmission. [36] considers a network of N nodes each equipped

with a tunable transmitter and a tunable receiver (a TT-TR con�guration), interconnected

through a passive star coupler that supportsW wavelength channels, and assumes W � N .

[36] uses a message model similar to the (r, T)-smooth traÆc model. [36] considers a set

of n isochronous message streams, fMi = (Ci;Di; N
s
i ; N

d
i)j1 � i � ng, where Ci is the

maximum number of packets in Mi that can arrive in any time interval of length Di. Di is

the relative transmission deadline for the messages in Mi. N
s
i and Nd

i are the source and

destination nodes for the messages inMi. The message density of an isochronous streamMi

is de�ned as �(Mi) = Ci=Di, and the total message density of a set of isochronous streams

M=fM1;M2; : : : ;Mng as �(M) =
Pn

i=1Ci=Di The algorithm �nds a slot assignment over

theW channels such that each message streamMi is guaranteed to transmit each of its mes-

sages before the message deadline Di subject to the source/destination con
ict constraints.

It does so by assigning at least Ci slots to Mi for any time interval of length Di.

[36] �rst solves a restricted case in a TT-FR (FT-TR) system in which the message

streams from a source node are assumed to be all destined to the same destination node.

In case of a TT-FR system all the message streams that are transmitted over a wavelength

channel are grouped into a message setM�c = fMij�(Nd
i) = �cg. A slot assignment scheme

allocates slots on each wavelength channel independently, such that in any time interval of

length of Di slots, at least Ci slots are allocated to Mi 2M�c on the wavelenght channel �c

for i and c. Given a set of isochronous message streams, �rst the deadline constraints are

specialized to a set D = fD1;D2; : : : ; Dng which consists solely of multiples, i.e., Di divides

Dj for all i < j. Message streams are then assigned priorities using the rate-monotonic

scheduling concept. Each Mi is then assigned Ci slots over the wavelength channel �c

during each time period [(j � 1):Di; j:Di], for all Mi 2 M�c . The assignment is done by

assigning the current slot over the wavelength channel �c to the message stream with the

highest priority among all the unful�lled message streams. [36] proves the correctness of

15

the above assignment procedure, that for �(M�c) � 1 such a assignment always exists. The

�nal composite slot schedule then consists of all the slot schedules, one for each wavelength

channel.

[36] then proposes a general slot assignment scheme for TT-TR systems. The

scheme consists of three steps, decomposition of message streams into a set of message sub-

streams, grouping time slots on each wavelength channel into sub-channels to facilitate slot

assignment in a well-spaced manner, and �nally assignment of sub-channels to sub-streams

by a mechanism called binary splitting. A message stream Mi is decomposed into a set of

message sub-streams S(Mi) de�ned as fMij = (Cij ; Dij ; N
s
i ; N

d
i) j 0 � j � mi and Cij = 1g,

where

Ci=Di =
Pmi

j=0Cij=Dij , mi = log2Di; Dij = 2j and Cij = 0 or 1; for 0 � j � mi.

To assign at least Ci slots in any time interval of Di slots, at least one slot needs

to be assigned to these sub-streams Mij in any time window of Dij . A 1=d sub-channel is

de�ned to consist of evenly spaced slots, of which any two consecutive ones are separated

exactly by d slots. A 1=d sub-channel can be further divided into k sub-channels, each with

density 1=kd. A transformed frame is formed such that a sub-channel will consist of consec-

utive slots in the transformed time frame. A mechanism called binary splitting is proposed

which assigns each message stream Mi suÆcient slots to ful�ll its delay requirement, sub-

ject to the source/destination con
ict constraints. Conceptually, binary splitting recursively

splits the set of message sub-streams under consideration into two smaller subsets, ML and

MR, until each subset consists only of a single sub-stream. It also recursively divides a trans-

formed time frame F 0 into two sub-frames FL and FR. A message sub-stream assigned to

ML (MR) will be assigned a sub-channel in the left (right) sub-frame FL (FR). The scheme

then assigns sub-channels to wavelength channels subject to the source/destination con
ict

constraints. [36] proposes the schedulability condition under which the above scheme is

guaranteed to yield a valid slot schedule and also provide the proof of correctness of the

binary splitting algorithm. [36] assumes that tuning latency of the transceivers is negligible,

and also the algorithm does not bene�t by having multiple transceivers at a node. Also be-

ing a preallocation-based scheme it cannot accommodate dynamic slot reservation/release

requests, the work in [37] addresses this problem.

[41] proposes a real-time protocol, based on Time Division Multiplexing (TDM)

that serves guarantee-seeking messages and best-e�ort messages for single destination, mul-

16

ticast, and broadcast transmission. [41] considers a network of N nodes interconnected

through a passive star coupler with C data channels, it is assumed that N = C. Each node

has a �xed tuned transmitter, and a tunable receiver (a FT-TR con�guration). Time is

slotted and each slot is equal to packet transmission time plus a gap for time synchroniza-

tion. [41] adapts the Time-Deterministic Time and Wavelength Division Multiple Access

(TD-TWDMA) medium access scheme proposed in [45]. By use of TDMA the access to each

channel is divided into cycles of time-slots. Each node is assigned certain slots to transmit

guarantee-seeking messages. However, in the absence of guarantee-seeking messages these

slots are released for transmitting best-e�ort messages from other nodes (or the same node)

according to a predetermined scheme. A simple deterministic distributed slot-allocation

algorithm does the slot allocation. To prevent destination con
icts each slot is assigned

a speci�c owner. Each cycle is partitioned into (N � 1)N data slots and N control slots.

The slot-allocation algorithm is based on a predetermined allocation scheme that can be

partly overloaded. Two sets of slot allocations are de�ned: high-priority (the default) and

low-priority. Each node transmits a control slot every cycle, which contains the release

message, and a list of its high-priority slots it wishes to release for the next cycle.

Since the slots are allocated in a predetermined manner, each node knows the

number of high-priority slots it holds towards each destination. Hence it can decide if the

demand of an incoming guaranteed message stream can be met. [41] analyzes the worst-case

packet latency for a guaranteed message stream. [41] performs better compared to a static

TDM system, however simulation results show that the bandwidth utilization is low.

[40] has considered the problem of scheduling m periodic tasks on n, n < m, iden-

tical processors. [40] represents the periodic task scheduling problem as a maximum network

ow problem. [40] shows that a feasible max-
ow assignment exists, which corresponds to

feasible schedule for the task scheduling problem.

Each periodic task i; i = 1; : : : ;m, is characterized by its computation time Ci

and deadline Di (also the period of the task), with 0 < Ci < Di. [40] assumes Ci and

Di, i = 1; : : : ;m, are integers and that time is slotted with slot time equal to one unit of

processing time. The density of a task i, �i = Ci=Di, and the total message density of a

set of m tasks is de�ned as � =
Pn

i=1Ci=Di. [40] de�nes the schedule period D as the least

common multiple of all task periods: D = lcm(D1; : : : ;Dm). [40] represents the periodic

task scheduling problem as a maximum
ow problem. The construction of the network

ow makes it possible to transform a feasible
ow with integer arc
ows into a schedule in

17

which the Task and Processor constraints are both satis�ed. [40] shows that the maximum

ow in the network is integer, and that there exists a feasible
ow assignment in which

all arc
ows are integer. Such a
ow assignment corresponds to a feasible schedule for the

task scheduling problem. Thus proving that � � n, where n is the number of identical

processors, is a suÆcient condition for scheduling the m tasks such that no deadlines are

ever missed.

The scheme presented above (in [40]) can be mapped to a preallocation-based

algorithm for providing deterministic timing guarantees for transmitting message streams

over a optical WDM single-hop network. The m periodic tasks correspond to m periodic

message streams; the n identical processors would correspond to n wavelength channel with

each node having an arrayed transmitter and receiver (a FTC-FRC con�guration).

Reservation-based Algorithms

The slot allocation problem mentioned in [36] (see section 2.2.2) is static in the

sense that the set of message streams is �xed and known at system initialization, and no

message streams are admitted or terminated afterwards. [37] proposes a dynamic slot al-

location scheme, building on the above de�ned concepts of specialization, message stream

decomposition, and channel decomposition. [37] considers a network of N nodes intercon-

nected through a passive star coupler than can support W + 1 wavelength channels, �0 is

used as the control channel, and �i; 1 � i � W are used as data channels. Each station

is equipped with (i) a pair of tunable tranceivers and (ii) a pair of �xed tuned transceivers,

both tuned to �0 (a CC-TTFT-TRFR con�guration). Data transmission in the network

operates in a slotted mode, and each data slot time is set to the sum of transceiver tuning

time plus packet transmission time. The control channel is also time slotted with each con-

trol slot equal to a data slot and divided into N mini-slots (each pre-assigned to a node).

A distributed dynamic slot allocation algorithm runs concurrently on every node in the

network. [37] splits the functions of the dynamic slot allocation scheme into two daemons:

the dynamic slot manager daemon (DYNMGR), and the dynamic slot allocator daemon

(DYNALO), which communicate with each other using two FIFO pipes. The DYNMGR

receives and processes call setup/clear requests. Upon arrival of a setup request, DYNMGR

�rst specializes the deadline constraints and if the message can be established without vio-

lating the source/destination con
ict constraints (or if the request is call clear) DYNMGR

18

relays the setup/clear request to other stations by transmitting in the pre-assigned mini-

slot on the control channel �0. Upon receipt of a setup request on the control channel the

DYNMGRs on all the nodes, decompose the message stream and forward the request to

DYNALO. DYNALO determines whether or not the message sub-stream can be established.

During system operation, DYNALO assigns W slots to the existing message sub-

streams, one on each data channel, according to the next slot requirement of each of the

message sub-streams. The DYNALO assigns at least one slot to each sub-stream within

its deadline, thus ensuring that each message stream Mi is assigned at least Ci slots over

any time interval of Di. After assigning the W current slots, DYNALO processes the next

setup/clear request, if one exists and there are no pending reservation requests. In case

of a setup request, DYNALO attempts to assign each of the sub-streams a sub-channel of

appropriate density, subject to the source/destination con
icts, starting with the sub-stream

with the largest deadline constraint. If sub-channels with the exact required deadline do

not exist the sub-channels are split recursively until they match the required deadline or a

con
ict is encountered. The splitting attempt is made on all available empty sub-channels

in the order of descending deadlines, until either a con
ict-free empty sub-channel with the

required deadline is generated or all empty sub-channels are investigated but no con
ict-

free empty sub-channel with required deadline is located. If the request is \clear" the sub-

channels assigned to the terminated sub-streams are tagged as empty. If there exists more

than one empty sub-channel with the same deadline constraint, the empty sub-channels are

merged starting with sub-channels that have the largest deadline constraint, and progress

in a backward manner until all empty sub-channels are merged. Two sub-channels of the

same deadline constraint d can be combined into one with deadline constraint d=2.

[37] proves the correctness of the proposed scheme, and claims that a newly ad-

mitted message stream can be immediately set up without any delay if the corresponding

setup request does not arrive during a transition period. A transition period, de�ned as

time during which a message with (specialized) deadline constraint Di is being terminated,

lasts no more than 4Di slots.

[30] proposes a set of reservation-based scheduling algorithms for scheduling variable-

length aperiodic time-constrained messages to meet their hard or soft real-time constraints.

[30] considers the same system model as [37], with the exception that length a control slot

is the transmission time of a control packet, which a system design parameter. The set of

algorithms proposed use the First Control Packet First Serve (FCPFS) algorithm [45] to

19

assign data channels and transmission time slots to selected messages. The basic idea of

FCPFS is to assign a message to a data channel that has the earliest available time slot

among all other channels. [30] proposes two priority assignment schemes based on the two

parameters associated with individual messages: their relative deadline and the length of

the message. Minimum Laxity First (MLF) assigns higher priority to messages with smaller

relative deadline and Shortest Job First (SJF) assigns higher priority to shorter messages.

[30] proposes a set of real-time scheduling algorithms, combining the transmission

channel and the time slots assignment (FCPFS) algorithm with the messages priority as-

signment schemes. First class of schedules, Frame scheduling, consider messages that arrive

at a node in the FCFS order. Only the messages at the head of each queue are reported

in the control packet. After the control packets related to these messages reach all the

nodes, either MLF or SJF assign priorities to these messages. Once the order of message

transmission is determined, the channel assignment algorithm, FCPFS, assigns a channel

and time slots to these messages. The algorithm Frame Minimum Laxity First (F-MLF)

uses MLF for priority assignment and Frame Shortest Job First (F-SJF) uses SJF. Since the

messages, at each node, are considered in the FCFS order, messages with smaller relative

deadline (or shorter messages) may get blocked.

The next strategy, Frame-and-Queue scheduling, maintains priority message queues

at each node, with priority assigned by MLF or SJF schemes. The messages with highest

priority at each node are reported in the control packet. After the control packets related

to these messages reach all the nodes, a sequencing algorithm based on the same priority

scheme is applied again to sequence the messages for FCPFS assignment. The algorithm

Frame-and-Queue Minimum Laxity First (FQ-MLF) uses MLF for priority assignment and

Frame-and-Queue Shortest Job First (FQ-SJF) uses SJF.

[30] shows that the MLF based algorithms reduce the message loss rate, and hence

are well suited for scheduling messages with hard real-time constraints. And the SJF based

algorithms reduce the average message delays, and hence are well suited for scheduling

messages with soft real-time constraints.

The authors of [31] extend their previous work [30]. [31] proposes an admission

control policy, a traÆc regulator , and a scheduling algorithm to provide guaranteed deter-

ministic performance service to applications' streams composed of real-time variable length

messages. [31] uses the same system model and control channel access scheme as that used

by [30]. [31] divides the network service into two levels. The upper level is the
ow level

20

at which the admission control and traÆc regulator manage and control the application

streams. The lower level is the message level at which individual messages are scheduled

and transmitted.

The scheduling algorithm handles two issues: message sequencing and channel

assignment. [31] proposes an adaptive round-robin and earliest available time scheduling

(ARR-EATS) algorithm to provide guaranteed deterministic bounded delay service, in con-

junction with the proposed admission control and traÆc policing schemes. The adaptive

round-robin algorithm determines the message transmission sequence. The ARR algorithm

di�ers from the traditional round-robin algorithm in that the ARR algorithm serves the

current variable length message completely before switching to the next queue. Since the

length of each message is di�erent, the service time for each queue is also di�erent. The

EATS technique assigns a data channel and transmission time slots to the selected message.

The basic idea of the EATS algorithm is to assign a message to a data channel that has the

earliest available time slot among all other channels (similar to the FCPFS algorithm [45]).

Token-passing-based Algorithms

[38] has proposed a distributed adaptive protocol, designed to support multiple

classes of soft real-time traÆc. [38] considers a network of N nodes interconnected through

a passive star coupler withM data channels and one control channel. Each node has a pair

of �xed tuned transceivers, tuned to the control channel, one or more �xed tuned receivers

and one or more tunable transmitters (a CC-TT�FT-FR�FR con�guration). Data channels

are not slotted hence the algorithm inherently supports variable length messages. A token

on the control channel is used to ensure collision-less transmission and to disseminate the

latest status information regarding the token-sending node. The token has a designated

receiver; however, every node receives a copy and uses it to update its local status tables.

The designated receiver determines which free channels to acquire or which currently held

channels to release. The Priority Index Algorithm (PIA) is used to compute the node's

priority index on each idle data channel. The node can acquire those channels for which it

estimates it has the maximum priority index over all nodes. The Transmitter Scheduling

Algorithm (TSA) then decides which of these eligible idle channels to acquire, this infor-

mation is then written into the token and passed to the next node, identi�ed by the Flying

Target Algorithm (FTA).

21

The PIA assigns an estimated priority index to each channel at each node, which

depends on the expected time to serve the packets currently queued at a node (towards a

channel) and additional real-time priority (ARTP) term that captures the real-time QoS

requirements of the stream. The ARTP term is adaptively varied according to whether the

fraction of packets missing their deadlines is greater, or less, than a prescribed level. ([38]

considers the percentage of packets missing their deadlines as the QoS measure.)

The TSA releases all the currently held channels for which the PIA estimates to

have a lower than highest priority index. The TSA orders the available channels on which

the node estimates itself to be the highest priority node, in the decreasing order of priority

and acquires the top nt channels (where nt is the number of tunable transmitters of the

node). If there are less than nt eligible channels, the node get a free ride, i.e., transmitters

are tuned to idle channels and can transmit data for the duration of time it takes the token

to reach the next node. The free ride mechanism is intended to utilize bandwidth that

would otherwise have been wasted.

Once the TSA acquires/releases channels, the FTA identi�es the next node to

receive the token. The FTA bases its decision on the following criteria (in order): nodes

should not starve for the token for more a speci�ed number of token hops, the token is passed

to the node that is estimated to have the highest priority among all the idle channels, if the

node currently holding the token is selected as the next node or if there are no free channels

the next node is selected in a round robin manner.

As can be observed the token passing mechanism used by [38] di�ers from the

traditional token-ring algorithm, in that (i) all the nodes receive a copy of the token, (ii)

the token is passed immediately after transmitter assignment as opposed to the end of

packet transmission and (iii) the next node to receive the token depends on the current

system status. [38] bene�ts by the presence of multiple transmitters at a node and the

protocol does not require super-fast tuning devices.

[39] extends a simple token-passing scheme to schedule a mix of real-time delay-

sensitive and non real-time loss-sensitive traÆc. [39] considers a network of N nodes inter-

connected by a passive star coupler with C channels. Each node has an arrayed transmitter

and receiver (a FTC-FRC con�guration). A multiplexer combines the separate signals from

the multiple sources onto a single output �ber, and a demultiplexer separates the wave-

lengths to individual �lters of a node. This enables each node to send or receive messages

using any channel. Hence the scheduling scheme only needs to address channel collisions.

22

This system model also facilitates the use of a
oating control channel and even in-band

signaling. The protocol operates as follows: if two or more channels are available to the

node when it transmits, then data and token packets are sent on separate channels. If,

however, a second channel is not available the data packets are piggybacked behind the

token packet. The token is passed in a logical sequence over all the nodes using a \round

robin" strategy. Each node has access to the network once every token rotation time (TRT).

In a static scheduling algorithm real-time packets have a higher access priority

at any network condition. This scheme results in the non real-time packets experiencing

a higher delay and higher packet loss compared to the real-time packets. [39] proposes a

scheme in which the access priorities are reassigned dynamically when the queue length of

the non real-time packets reaches an upper limit,
. This assignment is maintained until

the queue length reaches a lower limit, �.

Based on simulation results [39] suggests that a bigger bu�er size should be used

for non real-time traÆc, but with smaller upper threshold for priority shift to obtain im-

provement in both average delay and blocking probability (a measure of packet loss) for

both the traÆc types.

The next chapter discusses the system model on which our work is based.

23

Chapter 3

System Model and Problem

Statement

This chapter explains the system model on which this thesis is based. It introduces

various traÆc matrices and system parameters. We then state the problem that this thesis

addresses.

3.1 Network Model

We consider a broadcast and select network topology with N nodes which are

interconnected by a passive star coupler (PSC). The PSC supports C channels, �1; : : : ; �C ,

(see Figure 3.1). We assume the network to be wavelength-limited, hence N � C. There are

no opto-electronic conversions and no bu�ering/queuing inside the network. Each node is

equipped with a transmitter and a receiver. Tunability is provided only at the transmitters1.

All the transmitters are assumed to have a tuning range that spans all the C wavelengths and

it takes equal time to tune from any wavelength to any other wavelength. The receivers

are �xed tuned to their assigned home channels2. Since we assume a wavelength-limited

network more than one node is assigned the same home channel. We de�ne Rc as the set

of receivers sharing wavelength �c:

1Slowly tunable receivers could be used to achieve optimal network performance for varying traÆc
demands.

2If slowly tunable receivers are employed this wavelength-to-receiver assignment may change during the
recon�guration phase.

24

WDM
Passive Star Coupler

1

2

N

1

2

N

Transmitting side Receiving side

1...C Channels

Figure 3.1: A Broadcast-and-select WDM network

Rc = fjj�(j) = �cg; c = 1; : : : ; C (3.1)

The system operates in a time slotted manner. Data is transmitted in �xed sized

packets, and each slot time is equal to the packet transmission time, plus, possibly the tun-

ing latency. The tuning latency is de�ned as the time taken by transceivers to tune from

one wavelength to another. We consider systems with both negligible and non-negligible

transmitter tuning latencies. Each transmitter and each receiver is individually synchro-

nized at slot boundaries (taking into account the propagation delays3 to the PSC). At any

given timeslot, each transmitter can tune to and transmit a packet on one wavelength.

The algorithms we consider require control information about slot reservation re-

quests of each node on each channel. However the algorithms do not dictate the use of any

particular pretransmission coordination mechanism. In-band [29] as well as out-of-band

mechanisms for control data transmission could be used depending on other system param-

eters and constraints. That is, schedules can either be computed by a centralized scheduler

and distributed to each node or computed individually by each node by running an identical

copy of the scheduling algorithm once it receives all the required control information.

We assume that a N � N traÆc demand matrix D = [dij]. D is known, with

3We do not specify a control protocol hence the propagation delay to the PSC does not a�ect the algorithm
design or analysis, however propagation delay to the PSC needs to be known for slot synchronization.

25

dij representing the number of slots to be allocated for transmission of guaranteed traÆc

from source i to destination j. For example, dij could be the sum of slots requested for EF

traÆc and various drop precedences of AF traÆc from source i to destination j. Since a

transmission on wavelength �c is heard by all receivers listening on �c, once the receiver-

to-channel allocation is completed, the traÆc matrix can be collapsed into an N �C traÆc

demand matrix A = [aic]. Element aic of this collapsed matrix represents the number of

slots to be assigned to source i for transmissions on channel �c:

aic =
X
j2Rc

dij; i = 1; � � � ; N; c = 1; � � � ; C (3.2)

The scheduling algorithms take as input this collapsed traÆc demand matrix to

compute a transmission schedule. The transmission schedule may have idle slots during

which none of the nodes are permitted to transmit packets on to the channel. Such slots

represent wasted bandwidth and result in lower channel throughput. All such slots are

ideal candidates for best-e�ort allocation and could be used for transmitting best-e�ort

traÆc. Also admission control algorithms may restrict bandwidth (slot) reservation to

a certain percentage (a system parameter) of total available capacity, so that the excess

capacity may be used to serve best-e�ort traÆc. We de�ne mechanisms, which exploit

characteristics of the scheduling algorithms to compute the best-e�ort allocation, such that

the excess bandwidth is distributed to the best-e�ort traÆc in a max-min fair manner. The

best-e�ort allocation is represented by an N � C matrix B = [bic], with bic representing

the number of slots to be allocated to source i for transmission of best-e�ort traÆc on

channel �c. An N � C total demand matrix T = [tic], element tic is calculated as the sum

of guaranteed and best-e�ort slots to be allocated to source i for transmission on channel

�c:

tic = aic + bic; i = 1; � � � ; N; c = 1; � � � ; C (3.3)

The scheduling algorithms take as input the total demand matrix T and compute

the transmission schedule, let M be the length of the schedule, a M � C matrix S = [ssc],

where 1 � ssc � N represents the transmitter that has permission to transmit a packet on

channel �c during slot s. Any other value of ssc
4 represents an idle slot. Each node i should

4Each ssc is a scalar term (i.e., refers to only one transmitter), since we consider only scheduling algorithms
that yield a collision-less schedule.

26

have permission to transmit at least tic slots on channel �c over the length of the schedule.

If the tic slots are contiguously allocated for all nodes i on all channels �c, the schedule is

said to be non-preemptive; otherwise it is said to be preemptive. Under a non-preemptive

schedule, each transmitter will tune to each channel exactly once, minimizing the overall

time spent for tuning.

In a TT-FR WDM network, packets transmitted by two or more transmitters on

the same channel during the same time, result in a collision. A transmitter having permis-

sion to transmit on two or more wavelengths in a given timeslot, results in a transmitter

con
ict. In order to avoid packet loss due to collisions of any sort, the transmission schedule

is subject to the no-collision constraint and transmitter constraint.

The channel throughput, S, is de�ned as the average number of successful packets

transmitted on the C channels in a time slot. Hence S � C. The channel throughput is

a signi�cant parameter in the design of scheduling algorithms, since it signi�es how well

we are utilizing the available channel bandwidth. However, the process of optimizing the

network throughput [44] may increase the schedule length, in turn increasing the average

delay experienced by packets. Hence the scheduling algorithm that just tries to maximize

throughput may not be able to guarantee the bandwidth and delay requirements of the

message streams.

3.2 Problem Statement

The length of the transmission schedule cannot be smaller than the number of slots

required to satisfy all transmissions on any channel, yielding the channel bound. Similarly

each transmitter i needs tic number of slots on each channel �c, yielding the transmitter

bound. Hence the length of the transmission schedule will be greater than or equal to the

lower bound of the schedule length.

Bounds on Schedule Length

Channel Bound

F (C)
ch = max

c=1;:::;C

(
NX
i=1

tic

)
(3.4)

Transmitter Bound

F
(C)
tr = max

i=1;:::;N

(
CX
c=1

tic

)
(3.5)

27

Lower Bound on Schedule length

Fmin = max
n
F
(1)
tr ;F

(N)
ch

o
(3.6)

Objective

A transmission schedule S[M � C], with length of schedule, M , as close as possible to the

lower bound of (3.6), also called the optimal length, and with minimum number of idle slots

(that is, high channel throughput, S � C, without increasing the schedule length), subject

to the no-collision and transmitter constraints.

We consider scheduling algorithms that satisfy the no-collision and transmitter

constraints. Our objective is to schedule a mix of guaranteed traÆc and best-e�ort traÆc,

by allocating excess (or a speci�ed amount of) bandwidth to best-e�ort traÆc in a max-

min fair manner. We also identify parameters that a�ect the scheduling delays, and propose

heuristics to decouple delay and delay jitter from the e�ect of schedule lengths.

The next chapter explains the scheduling algorithms we have used, we then propose

best e�ort allocation schemes that exploit the characteristics of the scheduling algorithms.

28

Chapter 4

Scheduling Algorithms

Advances in technology have made possible very fast tunable transmitters. Trans-

ceivers with sub-microsecond tuning latency have been demonstrated. Rather than the

absolute value of the tuning latency we are interested in its value relative to that of packet

transmission time. Let Æ denote the normalized tuning latency, expressed in units of packet

transmission time. The value of Æ depends on the electronic data transmission speed, the

packet size, and the transceiver tuning time, and can be less than, equal to, or greater than

one.

We need algorithms that could make eÆcient use of resources in systems with

Æ � 1 and also in systems with Æ � 1 or Æ � 1. Systems with very high speed tuning

transceivers, or larger packet sizes or slower interface date rates, have Æ � 1. For instance,

at interface speeds of 1 Gigabits per second, 1000 byte packets and transceivers with tuning

latency 100 nanoseconds, the normalized tuning latency Æ = 0:0125 � 1. Accordingly, a

guard band of Æ time units can be added at the beginning of each time slot to allow the

transceivers suÆcient time to switch between channels, with minimal e�ects on the channel

throughput. For the example above only 1:25% of the total channel bandwidth is wasted

for transceiver tuning. For such systems preemptive algorithms could be employed to obtain

optimal performance.

For similar reasons, systems with non-negligible tuning latencies or with smaller

sized packets or faster interface electronics, have Æ � 1 or Æ � 1. For such systems including

the tuning latency of transceivers into every time slot would reduce the channel throughput

signi�cantly. For such systems algorithms should make eÆcient use of system resources

by masking tuning time of some transceivers by transmission by other nodes. Also such

29

systems bene�t by the use of non-preemptive algorithms that reduce the total tuning time

by tuning in to a channel only once per cycle.

In this chapter we �rst map the optimal preemptive open-shop scheduling algorithm

[26] to schedule packets for single-hop broadcast WDM networks. We then propose a simple

and eÆcient algorithm that can allocate best-e�ort traÆc to obtain 100% channel utilization.

We then discuss a non-preemptive scheduling algorithm and propose a mechanism that

exploits the characteristics of that algorithm to allocate best e�ort traÆc, and to yield near

optimal schedule lengths, with minimal number of idle slots.

4.1 Preemptive Open-Shop scheduling algorithm

[26] proposes a optimal �nish time (OFT) scheduling algorithm for a preemptive

m-processor open shop and shows that it can be obtained in polynomial time. [26] de�nes

a shop as being made up of m � 1 processors and n � 1 jobs. Each processor performs

a di�erent task and each job i has m tasks (one task to be executed on each processor).

Task j of job i requires exactly aij amount of processing and is to be processed on processor

j; 1 � j � m. Further an open shop has no restrictions on the order in which the tasks for

any job are to be processed. A schedule for a m-shop is a set of m processor schedules,

one for each processor in the shop. These m processor schedules must be such that no job

is to be processed simultaneously on two or more processors. The �nish time is the latest

completion time of the individual processor schedules and represents the time at which all

tasks have been completed. An optimal �nish time (OPT) schedule is one which has the

least �nish time among all schedules.

As can be seen the description of the open shop and the requirements of its schedule

correspond directly to problem and constraints, respectively, of scheduling packets over a

multi-channel single-hop network. The m processors correspond to m channels, the n jobs

correspond to the n nodes, and the tasks j of job i corresponds to the slot demand of node

i on channel j (an element of the collapsed demand matrix A, see Chapter 3.1). Hence

the optimal preemptive open-shop scheduling algorithm can be used to schedule packets

on a single-hop WDM network. The algorithm has the advantage that it yields optimal

schedule lengths hence makes it possible to provision bandwidth as well as specify a bound

on the delay parameters. The slot demands could represent bandwidth requirements of

aggregated application streams, the algorithm then provides the schedule that can transmit

30

packets according to the bandwidth requirements of guaranteed traÆc. We �rst explain

the algorithm brie
y and provide an example to show how the algorithm produces optimal

schedules. Later, in the next section, we provide an algorithm that can incorporate best-

e�ort traÆc into the slot demands without a�ecting the �nish time (schedule length). The

algorithm can achieve 100% channel utilization without increasing the schedule length by

distributing the excess bandwidth (idle slots) to best-e�ort traÆc.

The scheduling algorithm for a preemptive open-shop [26] makes use of basic con-

cepts from the theory of maximal matchings in bipartite graphs [24]. The m-processor open

shop can be represented as a bipartite graph with the n jobs, and m processors forming the

two partite sets. The tasks form the edge set, with the processing times being the weight of

each such edge. Given a set of n jobs with task times aij ; 1 � i � n and , for a m-processor

open shop, let

Tj =
P

1�i�n aij = total time needed on processor j, 1 � j � m

Li =
P

1�j�m aij = length of job i, 1 � i � n

Hence any preemptive schedule must have a �nish time of at least

� = max
i;j

fTj ; Lig: (4.1)

The preemptive m-processor scheduling algorithm proposed in [26] always has a �nish time

of �. � corresponds to the lower bound on schedule length of (3.6).

The algorithm constructs a bipartite graph, it consists of two vertex sets X =

fJ1; : : : ; Jn+mg and Y = fM1; : : : ;Mmg. The m jobs, fJn+1; : : : ; Jm+ng, added to the job

set, represent �ctitious jobs and a set of edges connect Jn+j to Mj , 1 � j � m to make the

sum of all incoming edges into each node Mj equal to �. The slots during which processors

are assigned to these �ctitious jobs represent processor idle times.

For every job i, its slack time is de�ned to be the di�erence between the amount

of time remaining in the schedule and the amount of processing left for that job. A job is

said to have become critical once its slack time goes to zero, at which time the job has to

be included into the schedule for it to complete by the �nish time.

The algorithm starts by computing an initial complete matching [25] of Y intoX at

time = 0. This matching is used as a starting point and may contain arbitrary job-processor

assignment. The algorithm then identi�es the time for which the current matching could

be used as a schedule. Once a job not in the schedule becomes critical or one of the task

31

in the matching �nishes its processing, all non-critical jobs are removed from the matching,

and augmenting paths [24] from all critical jobs are computed. The symmetric di�erence

between the current matching and the augmenting paths forms the next matching. In case

the matching computed is not complete, the jobs that were removed from the previous

matching are reconsidered and augmenting paths from jobs not in the current and previous

matching are computed to get a complete match. The process above is repeated until the

processor requirements of all the jobs is met.

[26] shows that the algorithm always has a �nish time of � and prove the correctness

of the algorithm that a complete matching can be obtained during every iteration of the

algorithm. The asymptotic time complexity of the algorithm is O(r(minfr;m2g+m log n)),

where n is the number of jobs, m the number of processors, and r the number of nonzero

tasks.

The example in Table 4.1 considers a three-processor open shop problem with �ve

jobs and the following task times:

Processor Job T
1 2 3 4 5

1 9 5 0 0 2 16
2 9 2 6 7 7 31
3 1 8 7 3 8 27

L 19 15 13 10 17 � = maxi;jfTj ; Lig = 31

Table 4.1: Collapsed demand matrix for three processors and �ve jobs

Additions of the �ctitious jobs J6; J7 and J8, introduces three more columns into Table 4.1:

26664
15 0 0

0 0 0

0 0 4

37775
As mentioned above, the weights assigned to the edges between the �ctitious jobs and the

processors represent idle slots. The entries in the additional columns suggest that processor

1 will have 15 idle slots and processor 3 will have 4 idle slots.

The Figure 4.1 shows the constructed bipartite graph for the three-processor open-

shop. At each step of the algorithm a matching of size three is obtained representing a task

32

1

1

2

2

3

3

4

5

6

7

8 4

15

9
91

5
28

6
7
7
3

8
72

Figure 4.1: Bipartite graph as constructed by the preemptive open-shop algorithm

being assigned to each of the three processors. The Figure 4.2 shows the resulting open-shop

schedule. The initial matching assigns jobs, J6; J5 and J8 to processors M1;M2 and M3

respectively. At time 4, job J8 �nishes its execution on processor M3, hence it is deleted

from the matching and an augmenting path starting from a job (J4) not in the matching is

computed. At time 7, job J4 �nishes its execution on processor M3, and so does job J5 on

processor M2, augmenting paths starting from jobs not in the matching assign jobs J4; J5

to processors M2;M3 respectively. At time 12, job J1 becomes critical and hence replaces

job J5 on processor M3. Later at time 13, job J1 �nishes its processing on M3, but remains

critical hence is assignedM2 and job J5 regains processorM3. The next interesting instance

is at time 21, at which job J2 becomes critical and is assigned processor M3. Next at time

23, job J3 becomes critical and is assigned processor M2. It should be noted that once a

job becomes critical it is assigned a processor till the end of schedule.

Time slots 3 4 5 6 7 8 9 201 2

idle 2 5 1

5 4 1 4 23

idle 4 5 1 5 3 2 3

λ

λ

λ3

1

2

10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 30 1

Figure 4.2: Preemptive open-shop schedule without best e�ort traÆc, for N = 5 and C = 3

33

Best e�ort allocation for the preemptive open-shop algorithm (BE-OS)

Input: N;C, Collapsed traÆc matrix A[N �C], BE requirement matrix BEReq[N �C],

additional slots F

Output: Best e�ort allocation matrix B[N � C]

1. begin

2. Tj =
P

1�i�N ai;j, 1 � j � C

3. Li =
P

1�j�C ai;j, 1 � i � N

4. � = maxi;jfTj ; Lig:

5. Set SchLgt = �+ F

6. while Tj < SchLgt and Li < SchLgt 8i; j 1 � i � N; 1 � j � C

7. Start with a random node and channel, ri; rj

8. for all nodes, i, and channels, j, starting from ri; rj

9. if BEReq[i][j] == 1 and Tj < SchLgt and Li < SchLgt then

10. increment bij; Tj ; Li

11. end if

12. end for

13. end while

14. end

Figure 4.3: Algorithm: Best-e�ort allocation for preemptive open-shop algorithm (BE-OS)

4.2 Best-e�ort traÆc allocation for OS

As can be seen above only the channel(s) which have total demand equal to the

OFT, �, or the node(s) whose sum of reservations on all the channels equals the OFT, �,

are kept busy all the time. We propose an algorithm to distribute excess bandwidth on

the non-busy channels to the nodes with best-e�ort traÆc, in a max-min fair manner. The

basic idea of the algorithm is to allocate the idle slots to the nodes with best-e�ort traÆc

such that neither the total time needed on channel, Tj; 1 � j � m nor the total demand of

a node, Li; 1 � i � n, exceeds the optimal schedule length, �.

34

The Figure 4.3 contains the algorithm for best-e�ort allocation for the preemp-

tive open-shop scheduler (BE-OS). The algorithm takes as input the number of nodes, N ,

number of channels, C, the collapsed traÆc demand matrix, A, the best e�ort require-

ment matrix, BEReq, and the number of additional slots to be allocated, F . If node i

has best e�ort traÆc destined to channel j, then BEReq[i][j] is set to 1 and 0 otherwise.

The parameter F represents the number of slots, in addition to �, by which to increase the

schedule length. In the case where F is zero only the idle slots will be assigned for best e�ort

traÆc. This parameter is required since many network providers set aside some percentage

of bandwidth for best e�ort traÆc (hence F could have been speci�ed as a percentage of

the total schedule length instead of number of slots). The algorithm starts every iteration

of slot allocation at a random node-channel pair so that none of the node-channel pairs get

a positional advantage.

In the case where all the nodes have best e�ort traÆc on each of the channels, the

preemptive open-shop alogorithm can be further optimized, in that, it does not require to

add the �cititious jobs that represent idle slots. This change will not a�ect the asymtotic

time complexity of the preemptive open-shop scheduling algorithm, however it will improve

its running time.

Extending the example used in Section 4.1 (demand matrix shown in Table 4.1),

for the best e�ort requirement matrix shown on the left below, the matrix on the right

shows the best e�ort slots allocated by BE-OS.

26664
0 1 0 1 1

1 1 1 0 0

0 0 1 1 1

37775 =)

26664
0 5 0 5 5

0 0 0 0 0

0 0 2 1 1

37775
The best e�ort allocation conforms to the de�nition ofmax-min fair allocation inmultiple re-

source situations [33]. The combined matrix, T, is obtained by the addition of the collapsed

traÆc matrix and the best e�ort allocation matrix (Equation (3.2)). The three-processor

open shop problem becomes as shown in Table 4.2.

It can be noticed that the total time needed on each channel (processor) is equal

to the schedule length, �. The resulting schedule as computed by the preemptive open-shop

scheduling algorithm is shown in the Figure 4.4, as can be noticed it has no idle time slots.

Neither the preemptive open-shop scheduling algorithm nor the best e�ort alloca-

tion algorithm assume any sort of traÆc distribution. In general, the best e�ort slot alloca-

35

Channel Node T
1 2 3 4 5

1 9 10 0 5 7 31
2 9 2 6 7 7 31
3 1 8 9 4 9 31

L 19 20 15 16 23 � = maxi;jfTj ; Lig = 31

Table 4.2: Combined traÆc matrix, with best e�ort slots allocated by BE-OS

Time slots 3 4 5 6 7 8 91 2

2 5 4 1

4 3 1 5 2

5 4 1 4 3 2 3

λ

λ

λ

1

2

3

10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

Figure 4.4: Preemptive open-shop schedule with best e�ort traÆc, for N = 5 and C = 3

tion scheme proposed increases the channel throughput, S � C. However the throughput

may be lower than C when the best e�ort requirement matrix is sparse or best e�ort re-

quirements are required on busy channels or by busy nodes. Simulation results (see Section

4.5) show that schedules with best-e�ort allocation obtain a channel throughput of almost

C even for low probabilities of best-e�ort requirement.

4.3 Non-preemptive Open-Shop with tuning latencies

[28] considers the problem of scheduling packets transmissions in a broadcast,

single-hop WDM network with arbitrary transmitter tuning latencies. [28] proposes a non-

preemptive schedule, since under such a schedule, each transmitter will tune to each channel

exactly once, minimizing the overall time spent in tuning. [28] refers to the problem of de-

termining an optimum length schedule for the collapsed traÆc matrix A, with tuning slots

� � 0 as the Open-Shop Scheduling with Tuning Latencies (OSTL) problem. OSTL is a

generalization of the nonpreemptive open-shop scheduling (OS) problem [26]; it reduces to

the later when we let � = 0. Problem OS is NP-complete when the number of wavelengths

36

C � 3 [26]. But for C = 2, there exists a polynomial-time solution of OS. [28] proves that

OSTL is NP-complete for any C � 2, hence proving that OSTL is more diÆcult than OS.

We consider the system to be operating in the bandwidth-limited region (see Chap-

ter 3). In a bandwidth-limited network the length of the schedule, satisfying the no-collision

and transmitter constraints, cannot be smaller than the number of slots required to satisfy

all transmissions on any given channel, hence the overall lower bound on the length of

schedule is given by:

M (l) =M
(l)
bw = max

1�c�C

(
NX
i=1

ai;c

)
(4.2)

[28] calls s1 = (�1; �2; : : : ; �N) as a transmitter sequence for a channel �1 if �2 is the

�rst node after �1 to transmit on �1, �3 is the second such node, and so on. And the sequence

repeats, that is, node �1 transmits on �1 after node �N . Similarly, v1 = (��1 ; ��2 ; : : : ; ��C)

is said to be a channel sequence for node 1, if this is the order in which node 1 is assigned

to transmit on the various channels, starting with channel ��1 . Given S a schedule of

length M for the collapsed traÆc matrix A, the transmitter sequences for each channel are

completely speci�ed. In general, these sequences can be di�erent for the various channels.

However, [28] considers a class of schedules in which the transmitter sequences are same for

all the channels. (Equivalently the class of schedules such that the channel sequences are

same for all the transmitters.)

[28] formulates the problem of �nding a optimum schedule for a given transmitter

sequence as an integer programming problem. The key idea of the scheduling algorithm,

which the authors call Make Bandwidth Limited Schedule (MBLS), is to schedule transmis-

sions on �1 so that this channel is always kept busy, except perhaps after all the nodes have

been given a chance to transmit. The algorithm �rst determines the channel sequence by

ordering the channels in the decreasing order of Tj , 1 � j � C. It then determines the

transmitter sequence by ordering the transmitters in the decreasing order of Li, 1 � i � N .

Hence we now have the channel �1 as the dominant channel, that is,
PN

i=1 ai;1 =M (l). The

algorithm executes in two passes. All gaps1 in the dominant channel �1 are initialized to

zero; then in Pass 1, transmissions in channels �2 through �C are scheduled at the earliest

possible time that satis�es the no-collision and transmitter constraints. Doing so, however,

may introduce large gaps into these channels, resulting in a sub-optimal schedule. During

1Gaps are de�ned as the number of slots that a channel remains idle between the end of transmissions
by node i and start of transmissions by node i+ 1.

37

the second pass, the algorithm attempts to compact the gaps within each channel by shifting

the slots to the right or left, but only so far as the no-collision and transmitter constraints

allow. The time complexity of the MBLS algorithm is O(C:N2).

Consider the example used in Section 4.1, with the collapsed traÆc matrix in

Table 4.1, shown along with the values for Tj and Li. For a system with �ve nodes, three

wavelengths and transmitter tuning latency of � = 2 slots, the schedule as determined by

the MBLS algorithm is shown in Figure 4.5.

Time slots 3 4 5 6 7 8 9 101 2 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

idle 5 idle 2 idle

1 5 2 3

2 3 4 idle 1 5 2

4

 idle1λ1

λ2

λ3

Figure 4.5: Nonpreemptive OSTL schedule without best e�ort traÆc, for N = 5, C = 3
and � = 2

The algorithm starts by ordering the channels in the order of Tj, 1 � j � 3. The channel

sequence thus formed is f�2; �3; �1g. The algorithm then orders the transmitter in the

order of Li, 1 � i � 5, the transmitter sequence thus formed is f1; 5; 2; 3; 4g. Transmitters

in the transmitter sequence are then assigned to channel �2 such that the channel is always

kept busy. Transmitters in the transmitter sequence are then assigned slots on the channel

�3 such that the transmitters have at least two slots between the end of transmissions on

channel �2 and start of transmissions on �3. This operation introduces a gap of six slots

between the end of transmission by node 1 and the start of transmission by node 5. Similarly

transmitters are then assigned slots on the last channel, �1. Again this operation introduces

a gap of �ve slots between the end of transmission by node 1 and start of transmission by

node 5, and a gap of six slots between the end of transmission by node 5 and start of

transmission by node 2. The second Pass of the algorithm pushes the slot assigned to

transmitter 1 on channel �3 six slots to the right, thus making space for the 13 slots of the

schedule to wrap around. Similarly it moves the slots assigned to node 1 on channel �1

six slots to the right to allow node 1 to tune in from channel �3. The resulting schedule is

shown in Figure 4.5.

38

It should be noticed that the algorithm MBLS was able to schedule the collapsed

traÆc matrix of Table 4.1 to obtain the optimal schedule length. However, it has quite a

few idle slots due to the varying demands on the three channels. We now explore how these

slots could be assigned to best-e�ort traÆc sources without increasing the schedule length.

4.4 Best-e�ort traÆc allocation for OSTL

[28] provides an upper bound on the \degree of nonuniformity" of the collapsed

traÆc matrix, A, in order to guarantee a schedule of length equal to the lower bound. [28]

proves that for a collapsed traÆc demand matrix, A, in a bandwidth-limited network, a

schedule of length equal to M (l) exists within the class of schedules for a given transmitter

sequence, if the elements of A satisfy the following condition:�����aic � M (l)

N

����� � � 8i; c (4.3)

with � given by

� =
2M (l)

N + 2

�
1

C
�

1

N
�

�

M (l)

�
: (4.4)

It can be noticed that to have a higher value of � the network needs to be designed

such that the lower bound on schedule, M (l) is high, that is, higher aic values. Also smaller

the number of channels, C, higher would be the value of �. Also a higher value � could

be obtained by having the number of nodes, N , signi�cantly higher than the number of

channels, C. For instance, for N = 200; C = 24, and ignoring the �
M(l) term, we get

�
M(l)=N

� :062. That is, the elements aic could vary 6:2% around M(l)

N and the algorithm

would still guarantee a schedule of length M (l).

However, since we do not assume a uniform distribution for the collapsed matrix,

A, elements could be higher than the average slot reservation by a number greater than the

\degree of nonuniformity". Hence in the best-e�ort allocation algorithm that we propose, we

only consider elements, aic, that have demand strictly less than the average slot requirement

(M
(l)

N). The basic idea of the algorithm is to allocate the excess bandwidth (idle slots) to

nodes which have a lower than average slot requirement. Figure 4.8 shows the best e�ort

alloction algorithm for the nonpreemptive OSTL algorithm (BE-OSTL).

The algorithm takes as input the number of nodes, N , the number of channels,

C, the collapsed traÆc demand matrix, A and the number of additional slots, F , to be

39

allocated. The algorithm identi�es the elements that have less that the average slot re-

quirement, and tries to allocate additional slots to such elements without increasing the

total transmission time required on the channel, beyond the lower bound on the length of

schedule, M (l). The term
Alloci;j
pos eTj

on line 14 of the algorithm signi�es the percentage of

excess slots on the channel �j that can be assigned to node i. The time complexity of the

algorithm is O(N:C).

Again consider the three channel, �ve node example with the collapsed traÆc

matrix in Table 4.1. The BE-OSTL algorithm �rst computes the excess slots that a node

can get on each of the channels, it then computes the total number of excess slots on each

channel. The table below shows excess time slots that a node could be allocated on each

of the channels, a negative value for the element suggesting that the corresponding element

in the collapsed traÆc matrix, A, exceeds the average slot requirement of 6 (M
(l)

N). The eT

column contains the sum of all the elements of a row in the excess slot allocation matrix, it

adds both the positive and negative values. Similarly, the eL row contains the sum of all

the elements of a column in the excess slot allocation matrix. The pos eT column and the

pos eL row contain sums of only the positive elements of the excess slot allocation matrix.

Channel Node eT pos eT
1 2 3 4 5

1 -3 1 6 6 4 14 17
2 -3 4 0 -1 -1 -1 4
3 5 -2 -1 3 -2 3 8

eL -1 3 5 8 1
pos eL 5 5 6 9 4

The best e�ort slot allocation for a node i on channel �j are computed us-

ing the element Alloci;j such that it does not increase the total transmission time on

a channel �j beyond the lower bound. For instance, node 3 on channel �1 is allocated

min(14 � 6
17 ; 5 �

6
6) = min(b4:9c; 5) = 4. The best e�ort allocation is shown in the matrix

below: 26664
0 0 4 4 3

0 0 0 0 0

0 0 0 1 0

37775
The best e�ort traÆc allocation, matrix B, is then added to the collapsed traÆc

matrix, A to yield the combined traÆc matrix, T. The nonpreemptive OSTL algorithm

operates on this combined traÆc matrix. The resulting schedule is shown in �gure 4.6.

40

Time slots 3 4 5 6 7 8 9 101 2 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1

 1

 2

 31idle

4

5idle2 4

 5

 3

1 idle 3

5 1

 4 2

λ

λ

λ

1

2

3

Figure 4.6: Nonpreemptive OSTL schedule with best e�ort traÆc, for N = 5, C = 3 and
� = 2

It can be noticed that the schedule still has some idle slots, and it would be

tempting to rather use the BE-OS best e�ort algorithm proposed in Section 4.2. However,

the BE-OS algorithm does not discriminate the best e�ort slot allocation depending on the

individual elements of the collapsed traÆc matrix, A. That is, node i that has demand

aic on channel c greater than the average slot requirement is also considered for best e�ort

slot allocation. Doing this may result in the resulting nonpreemtive OSTL schedule length

being greater than the lower bound, M (l). The �gure 4.7 shows the nonpreemptive OSTL

schedule for the combined traÆc matrix of Table 4.2, which was obtained by the addition of

best e�ort slots allocated by the BE-OS algorithm, to the collapsed traÆc matrix in Table

4.1. The �gure shows that the length of the schedule is 35 slots, which is greater than

the lower bound of 31 slots. Simulation results (see Section 4.5) further corroborate that

BE-OSTL scheme is better suited for best e�ort allocation when the nonpreemptive MBLS

scheduling algorithm is used to schedule packets.

Time slots 3 4 5 6 7 8 9 101 2 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5

 idle

2

5 1

 2

43 2

idle

51

 4 3

 1 5

3 4 idle

5 2

λ1

λ2

λ3

Figure 4.7: Nonpreemptive OSTL schedule with best e�ort traÆc allocation by BE-OS, for
N = 5, C = 3 and � = 2

Algorithm BE-OS has the advantage that it can be used to allocate best e�ort

41

slots to nodes that speci�cally request best-e�ort slots (via the best e�ort requirement

matrix, BEReq. Further it places no restriction on which nodes get the excess slots,

contingent that the total transmission on the channel or the total demand of a node does not

exceed the optimal schedule length. However, algorithm BE-OS is designed to exploit the

characteristics of preemptive scheduling algorithms, which can be employed in systems with

negligible tuning latency as compared to the packet transmission time (Æ � 1). Algorithm

BE-OSTL provides an eÆcient mechanism of allocating excess slots in a system employing

nonpreemptive scheduling algorithms.

4.5 Simulation Study

In this section, we study the performance of the two best e�ort allocation schemes,

BE-OS and BE-OSTL, presented in Sections 4.2 and 4.4 of this chapter. We also compare

the performance of the two best e�ort allocation schemes when the nonpreemptive MBLS

algorithm is used to schedule packets.

We generate random instances of the traÆc demand matrix, A. The elements

of the matrix A are generated by an exponential random number generator with mean

of 12 arrivals, and a maximum value of 21. Each point plotted represents the average of

results obtained by applying the algorithms on six thousand independent matrices A. The

averages are plotted along with 95% con�dence interval values2. We have plotted graphs

for a number of channels C = 6; 24, and a number of nodes N , between 9 and 20 for C = 6,

and between 60 and 150 for C = 24. Other associated variables will be speci�ed during

the discussion of the corressponding graphs. The channel throughput, S, is de�ned as the

average number of packet transmissions on the C channels in a time slot. S can be obtained

as the ratio of total number of non-idle slots in a schedule to the schedule length. We de�ne

channel utilization as:
S

C
� 100 (4.5)

Channel utilization represents how much percentage of the total available bandwidth is

assigned for packet transmissions. Figures 4.9 and 4.10 plot the channel utilization (4.5)

with BE-OS best e�ort allocation when the preemptive open-shop scheduling algorithm is

2The con�dence interval values were obtained by the method of replications, each individual run is
independent of other runs. The con�dence interval is: (�x � 1:96 sp

n
, �x + 1:96 sp

n
) where �x and s are the

sample mean and variance of n values, respectively.

42

used to schedule packets. Figures 4.11 and 4.13 plot the channel utilization (4.5) with

BE-OSTL best e�ort allocation when the nonpreemptive MBLS algorithm [28] is used to

schedule packets.

The lower bound on the schedule length of a bandwidth-limited network,M (l), can

be obtained from (4.1). Let M be the actual length of schedule, for a given traÆc matrix,

produced by some scheduling algorithm. Then the quantity

M �M (l)

M (l)
� 100 (4.6)

represents how far the lengthM of the schedule produced by the algorithm is from the lower

bound. Figure 4.15 and Figure 4.16 plot (4.5) and (4.6), respectively, against the number

of nodes, N , for channel throughput and schedule length comparisions between the BE-OS

and BE-OSTL best e�ort allocation algorithms when the nonpreemptive MBLS algorithm

is used to schedule packets.

LetMfBE be the actual length of a schedule, for a given traÆc matrix without best

e�ort allocation, produced by some scheduling algorithm, say A. Let MBE be the actual

length of a schedule, for the given traÆc matrix combined with the best e�ort allocations,

produced by the same scheduling algorithm, A. Then the quantity

MBE �MfBE
MfBE � 100 (4.7)

represents the percentage increase in the schedule length after combining a given traÆc

matrix with best e�ort allocation, the schedules being produced by the same scheduling

algorithm. Figures 4.12 and 4.14 plot the quantity in (4.7) against the number of nodes,

N , BE-OSTL being the best e�ort allocation scheme and the schedule being computed by

the nonpreeemptive MBLS algorithm.

Performance of BE-OS with preemptive open-shop scheduling

In addition to the traÆc demand matrix,A, the BE-OS algorithm takes as input a best e�ort

requirement matrix, BEReq, which conveys which nodes need best e�ort allocations and on

which channels. Each element of the matrix BEReq is set to 1 with a uniform probability

of pbe, that is, node i has best e�ort traÆc on channel j, 1 � i � N; 1 � j � C, with

probability pbe. The Figures 4.9 and 4.10 plot channel utilization (4.5) against the number

of nodes, N , for values of pbe = f0; 0:25; 0:5; 0:75g3 . The case with pbe = 0 represents the

3The case pbe = 1 is always guaranteed to yield 100% channel utilization.

43

schedules without best e�ort allocation. As expected, such schedules yield lower channel

utilization irrespective of the value of N and C. The lower values of pbe represent sparse

best e�ort requirements, and it is possible for these requirements to be on busy channels

or by busy nodes. Hence the resulting schedules may have idle slots, yielding a lower that

100% channel utilization. However as the number of nodes increases the simulation results

show that even for low values of pbe all the available bandwidth could be utilized for packet

transmissions, that is, channel throughput S approaches C.

As discussed in Section 4.2, the best e�ort allocation by algorithm BE-OS does not

increase the schedule length of the resulting combined traÆc matrix, that is, the quantity in

(4.7), for BE-OS best e�ort allocation with the preemptive open-shop scheduling algorithm,

is always zero.

Best e�ort allocation for nonpreemptive MBLS scheduling

Figures 4.11 and 4.13 plot the channel utilization (4.5) obtained by the nonpreemptive

MBLS scheduling algorithm for values of tuning latency � = 0; 4, with and without best

e�ort allocations. The BE-OSTL best e�ort allocation scheme is used to allocate best e�ort

slots to nodes that have lower than the average slot requirement of M(l)

N . The �gures show

that the best e�ort allocation by the BE-OSTL scheme increases the channel utilization

in both the cases with tuning latency � = 0 and � = 4. It is equally important that

the best e�ort allocation of slots should not increase the schedule length considerably.

Figures 4.12 and 4.14 plot the quantity in (4.7), which represents the percentage increase

in schedule lengths after best e�ort allocation. As can be seen the BE-OSTL scheme does

not increase the schedule lengths considerably. It can be observed that as the number of

nodes increases the channel utilization increases and the percentage increase in the schedule

length decreases.

We now consider the comparisons between the BE-OS and BE-OSTL best e�ort

allocation schemes, when the nonpreemptiveMBLS scheduling algorithm is used to schedule

packets. The BE-OSTL algorithm considers nodes for best e�ort allocation regardless of the

best e�ort requirement of the nodes. Hence all the elements of matrix BEReq are set to 1,

so that even the BE-OS scheme considers all the nodes for best e�ort allocation. Figure 4.15

plots the channel utilization obtained by two schemes for values to tuning latency � = 0; 4.

And Figure 4.16 plots the quantity in (4.6) which represents how far the schedule lengths are

from the lower bound. The �gures show that best e�ort allocations by the BE-OS scheme

yield a slightly higher channel utilization, however it also results in an increased schedule

44

length. Thus validating the need for the two di�erent best e�ort allocation schemes. The

BE-OS scheme is appropriate with preemptive OS packet scheduling algorithm while the

BE-OSTL scheme operates well with the nonpreemptiveMBLS packet scheduling algorithm.

In the next chapter we discuss optimization heuristics that yield better delay and

delay jitter performance in systems which employ preemptive packet scheduling mechanisms.

45

Best e�ort allocation for the nonpreemptive OSTL algorithm (BE-OSTL)

Input: N;C, Collapsed traÆc matrix A[N � C], additional slots F

Output: Best e�ort allocation matrix B[N � C]

1. begin

2. Tj =
P

1�i�N ai;j, 1 � j � C

3. Li =
P

1�j�C ai;j, 1 � i � N

4. � = maxi;jfTj ; Lig:

5. Set SchLgt = �+ F

6. Set UniAlloc = SchLgt
N

7. Set Alloci;j = UniAlloc� aij, 8i; j; 1 � i � N; 1 � j � C

// let eTj and eLi hold the excess bandwidth on each channel and node, respectively

8. eTj =
PN

i=1Alloci;j 1 � j � C

9. eLi =
PC

j=1Alloci;j 1 � i � N

// elements with positive Alloci;j are eligible for best-e�ort allocation.

// let pos eTj and pos eLi hold the sum of possible allocation of all eligible channels

// and nodes, in general, eTj � pos eTj and eLi � pos eLi 8i; j

10. pos eTj =
PN

i=1(Alloci;j > 0?Alloci;j : 0) 1 � j � C

11. pos eLi =
PC

j=1(Alloci;j > 0?Alloci;j : 0) 1 � i � N

// now allocate additional slots

12. 8i; j 1 � i � N; 1 � j � C

13. if Alloci;j > 0 and eTj > 0 and eLi > 0

14. bij = min(eTj �
Alloci;j
pos eTj

; eLi �
Alloci;j
pos eLi

)

15. end if

16. end 8

17. end

Figure 4.8: Algorithm: Best e�ort allocation for the nonpreemptive OSTL algorithm (BE-
OSTL)

46

8 10 12 14 16 18 20
70

75

80

85

90

95

100

Number of Nodes, N

C
ha

nn
el

 u
til

iz
at

io
n

0%
25%
50%
75%

Figure 4.9: Channel throughput with BEOS best e�ort allocation, for C=6 (values plotted
with 95% con�dence interval)

60 70 80 90 100 110 120 130 140 150
82

84

86

88

90

92

94

96

98

100

Number of Nodes, N

C
ha

nn
el

 u
til

iz
at

io
n

0%
25%
50%
75%

Figure 4.10: Channel throughput with BEOS best e�ort allocation, for C=24 (values plotted
with 95% con�dence interval)

47

8 10 12 14 16 18 20
60

65

70

75

80

85

90

95

Number of Nodes, N

C
ha

nn
el

 u
til

iz
at

io
n

BE, ∆ = 0
no BE, ∆ = 0
BE, ∆ = 4
no BE, ∆ = 4

Figure 4.11: Channel throughput with BEOSTL best e�ort allocation, for C=6 (values
plotted with 95% con�dence interval)

8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Number of Nodes, N

%
 fr

om
 s

ch
ed

ul
e

le
ng

th
s

w
/o

ut
 B

E
O

S
T

L
al

lo
ca

tio
n

∆ = 0
∆ = 4

Figure 4.12: Percentage increase in schedule length after BEOSTL best e�ort allocation,
for C=6 (values plotted with 95% con�dence interval)

48

60 70 80 90 100 110 120 130 140 150
72

74

76

78

80

82

84

86

88

Number of Nodes, N

C
ha

nn
el

 u
til

iz
at

io
n

BE, ∆ = 0
no BE, ∆ = 0
BE, ∆ = 4
no BE, ∆ = 4

Figure 4.13: Channel throughput with BEOSTL best e�ort allocation, for C=24 (values
plotted with 95% con�dence interval)

60 70 80 90 100 110 120 130 140 150
0.5

1

1.5

2

2.5

3

3.5

4

Number of Nodes, N

%
 fr

om
 th

e
sc

he
du

le
 le

ng
th

s
w

/o
ut

 B
E

O
S

T
L

al
lo

ca
tio

n

∆ = 0
∆ = 4

Figure 4.14: Percentage increase in schedule length after BEOSTL best e�ort allocation,
for C=24 (values plotted with 95% con�dence interval)

49

60 70 80 90 100 110 120 130 140 150
76

78

80

82

84

86

88

90

Number of Nodes, N

C
ha

nn
el

 u
til

iz
at

io
n

BEOS, ∆ = 0
BEOSTL, ∆ = 0
BEOS, ∆ = 4
BEOSTL, ∆ = 4

Figure 4.15: Channel throughput comparisions with OSTL scheduling algorithm, for C=24
(values plotted with 95% con�dence interval)

60 70 80 90 100 110 120 130 140 150
5

10

15

20

25

30

Number of Nodes, N

%
 fr

om
 lo

w
er

 b
ou

nd

BEOS, ∆ = 0
BEOSTL, ∆ = 0
BEOS, ∆ = 4
BEOSTL, ∆ = 4

Figure 4.16: Schedule length comparisions with OSTL scheduling algorithm, for C=24
(values plotted with 95% con�dence interval)

50

Chapter 5

Optimization Heuristics

The scheduling algorithms discussed in Chapter 4, schedule packets in bursts thus

increasing the variance in delay experienced by the packet streams. Each node transmits a

burst of packets in consecutive time slots during a cycle and then waits until its turn in the

next schedule cycle. In Figure 5.1 the inter-departure time between packets transmitted at

t1 and t2 is equal to the slot time (packet transmission time plus guard band, if any) and the

inter-departure time between packets transmitted at t2 and t3 is equal to a schedule cycle

time (schedule length, M , times the slot time). In this chapter we discuss a scheme that

can reduce such variation in delay by scrambling the slots of a schedule so that adjacent

slots are well separated. Thus decoupling the e�ect of schedule lengths on scheduling delay

and delay-jitter.

...

 t t t t3 41 2

Schedule length * slot time

Figure 5.1: E�ect of scheduling bursts of packets on scheduling delay

It makes sense to schedule packets in a burst if the objective of the scheduling

algorithm is to minimize the time needed to satisfy the traÆc demands and tuning time is

not included as part of the slot time (for instance if the normalized tuning latency, Æ � 1 or

Æ � 1). As described in Chapter 4, nonpreemptive scheduling algorithms aim to minimize

the time transmitters spend in tuning, by tuning each transmitter to each channel exactly

51

once. For such algorithms packets are transmitted in bursts, that is, such algorithms trade

o� the variance of delay experienced by the packets with reduction in tuning time.

However, systems which assume negligible tuning latency (Æ � 1), employ the

preemptive scheduling algorithms. The algorithms may be so designed that they try to

schedule packets in chunks of largest possible size. For instance, the optimal preemptive

scheduling algorithm presented in Chapter 4 schedules a given matching (a set of node-

to-channel assignment) until one of the node �nishes its transmission or some other node

becomes critical. Hence even the systems that employ preemptive packet scheduling algo-

rithms may also be subject to the e�ects of delay variation. One could try to solve this

problem by modifying the scheduling algorithm such that it schedules packets from di�erent

nodes in consecutive time slots. The other approach could be to scramble the slots of a

schedule so that adjacent slots are well separated. We discuss such a mechanism in this

chapter.

5.1 Channel Decomposition

Channel decomposition [36] is a technique that scrambles the time slots of a sched-

ule such that adjacent slots are well spaced. The idea is to group slots in the odd (even)

position together and then recursively apply the same rule on the newly formed group of

slots until it no longer a�ects position of the slots (when group size equals one or two).

The technique is demonstrated in Figure 5.2. As shown in the �gure the channel decom-

position is a recursive procedure, and the asymptotic time complexity of the procedure is

O(M log2M), where M is the length of the schedule.

The scheduling algorithm computes the schedule as usual, once the schedule length

is known, the channel decomposition procedure maps the adjacent slots to slots that are

placed well apart. For instance consider the schedule of length 12 shown in Figure 5.3.

Figure 5.2 shows the channel decomposition for the schedule of length 12. The decomposed

channel suggests that slot 2 of the normal schedule maps to slot 9 of the decomposed

schedule, similarly slot 3 of the normal schedule maps to slot 5, and so on. The second time

line in Figure 5.3 shows the resulting decomposed schedule.

Simulation results show that channel decomposition e�ectively reduces the varia-

tion in the delay experienced by the packets. The e�ects are more pronounced for longer

schedule lengths. Thus decoupling the e�ect of schedule lengths on scheduling delay and

52

�
�
�
�

 1 2 3 4 5 6 7 8 9 10 11 12

 o o o o o o e e e e e e

 1 3 5 7 9 11 2 4 6 8 10 12

 1 5 9 3 7 11 2 6 10 4 8 12

 1 9 5 3 11 7 2 10 6 4 12 8

 1 2 3 4 5 6 7 8 9 10 11 12slots

Figure 5.2: Channel Decomposition

 2 3 4 1

 2 4 3 1

 1 2 3 4 5 6 7 8 9 10 11 12slots

 4 2 1 4 2 4 3 1

Figure 5.3: Decomposition of a 12-slot schedule

delay-jitter.

The next chapter discusses the architecture and implementation of the WDM

single-hop TT-FR simulator component.

53

Chapter 6

Simulator Implementation

A signi�cant contribution of this thesis is the implementation of a
exible and

highly extensible simulator for tunable transmitter, �xed receiver WDM single-hop net-

works. The simulator component uses the functionality provided by the Di�serv model

contributed by Nortel Networks [7] on ns-2 [6]. This chapter explains the important as-

pects of our simulator. We start with a brief introduction to ns-2 and the Nortel's Di�serv

implementation. We then deal with the design and implementation of the WDM scheduler.

6.1 Introduction to ns-2

ns [6] has been developed at the Lawrence Berkeley National Laboratory (LBNL)

of the University of California, Berkeley (UCB). Currently ns development and support is

carried on at the Information Sciences Institute (ISI) of the University of Southern Califor-

nia, Los Angeles (USC). ns is a discrete event simulator targeted at networking research. ns

provides substantial support for simulation of TCP and its variants, routing, and multicast

protocols over wired and wireless (local and satellite) networks.

ns has an extensible background engine implemented in C++ that uses OTcl (an

object oriented version of Tcl) as the command and con�guration interface. ns uses the

split programming paradigm because the simulator is designed to do two di�erent kind of

things. On one hand, detailed simulations of protocols requires a systems programming

language which can eÆciently manipulate bytes, packet headers, and implement algorithms

that run over large data sets. For these tasks run-time speed is important and turn-around

time (run simulation, �nd bug, �x bug, recompile, re-run) is less important. On the other

54

hand, a large part of network research involves slightly varying parameters or con�gura-

tions, or quickly exploring a number of scenarios. In these cases, iteration time (change the

model and re-run) is more important. Since con�guration runs once (at the beginning of

the simulation), run-time of this part of the task is less important. C++ meets the �rst

requirement and OTcl the second.

Why integrate the WDM simulator component with ns?

ns-2 does not have intrinsic support for WDM links, i. e., multi-channel links. Hence

integrating a WDM scheduler into ns, requires either adding the multi-channel functionality

to the links or mapping the existing link structure to emulate the functioning of a WDM

link. In either case the question arises, why should you integrate you code into ns, instead

of implementing a proprietary simulation? A simple answer would be: to REUSE existing

TESTED code. ns-2 code has the advantage of being tested by hundreds of researchers

worldwide, and hence the implementation of ns-2 has evolved to be robust and reliable. The

modules that implement the di�serv architecture at a node, viz., classi�ers, meters, markers,

shaper/droppers, are independent of the type of link on which packets are forwarded. Also

ns-2 supports a myriad of implementations of queuing mechanisms, traÆc generators, all of

which help a researcher to concentrate on the problem at hand, rather than worrying about

the nitty-gritty implementation details of other required networking components.

Another important point is that ns is being used extensively by many researchers

all over the world, who do not have to learn a new entire simulator from level zero to extend

it. As we shall see, the WDM component has been designed such that newer scheduling

algorithms and queuing mechanisms can be integrated into the WDM component with

relative ease.

6.2 Nortel's Di�serv implementation in ns-2

Nortel's implementation of Di�Serv provides the components that implement the

Di�Serv architecture in ns. It abstracts the functionality of a Di�Serv router into a queuing

mechanism. It uses multiple RED-based [18] queues to enable di�erential treatment of

di�erent traÆc aggregates. Each RED queue consists of up to three virtual queues, one for

each drop precedence. Di�erent RED parameters are used for these virtual queues to enable

di�erential treatment of traÆc within a single class. It has two modules that correspond to

55

the edge and core router responsibilities.

The edge queue class is responsible for maintaining multiple physical and virtual

queues and processing those queues according to their parameters. Additionally it marks

packets with code points and polices traÆc aggregates. A policy determines the treatment

that a traÆc aggregate will receive at the edge device. Edge devices use policy information

to determine with what code point to mark packets. Each policy de�nes a policer type, a

target rate, and other policer-speci�c parameters.

Each traÆc aggregate has an associated policer type, meter type, and initial code

point. The implementation currently supports the following policer/meter types:

* TSW2CM [19] - time sliding window two color marker

* TSW3CM [20] - time sliding window three color marker

* TokenBucket [21] - token bucket

* srTCM [22] - single rate three color marker

* trTCM [23] - two rate three color marker

The implementation currently support the following scheduling mechanisms between queues:

* RR - plain vanilla round robin (default)

* WRR - weighted round robin

* WIRR - weighted interleaved round robin

* PRI - priority queueing

The core queue class emulates the core router in the Di�Serv architecture; thus,

it is intended to work downstream from an edge router. It forwards packets according to

the marking done on them by the edge router.

6.3 Design and Implementation of the WDM Scheduler

To test the performance of our schedules the WDM Scheduler simulation was in-

tegrated into the network simulator (ns-2). This section is organized as follows: we discuss

the network model and how we have mapped this model into an ns-2 topology. We then

56

discuss the simulation architecture, the main components involved in the simulator and

explain the extensions required to the Nortel's Di�Serv implementation. We have used the

Di�Serv module since we were trying to integrate and evaluate the performance of schedul-

ing algorithms that schedule a di�erentiated mix of traÆc. However our simulator has

been designed to be highly extensible, and a subsection explains how di�erent scheduling

algorithms (for single hop WDM networks) and di�erent queuing mechanisms could be in-

corporated in to our simulator. Each subsection explains any exported Tcl commands and

demonstrates its usage.

Network model and simulation architecture

Recall that a broadcast and select WDM network is made up of N nodes interconnected

by a passive star coupler that supports a set of C channels. The nodes are connected to a

passive star coupler that couples the data transmitted on each of the C channels so that all

the receivers receive data on every channel that was carrying data. In any practical network

con�guration we have that N > C (see Figure 3.1). In a TT-FR con�guration tunability is

required only at the transmitters. The receivers are assigned a home channel and any data

destined to a node should be transmitted on its home channel.

In an unfolded representation of the system (see Figure 3.1), two di�erent nodes

represent the transmitter and receiver at a node. Sets of nodes assigned a common home

channel receive all the packet transmissions on their home channel. Hence having each of

the N nodes connected to C LANs can represent the system model.

Network simulator (ns-2) does not have support for multi-channel links between

nodes; neither does it support WDM links. We are primarily interested in the collapsed

total traÆc matrix since the scheduling algorithms works on the N�C collapsed total traÆc

matrix, T . The collapsed traÆc matrix lends itself to the representation of the system model

by an N �C mesh of unidirectional links. This ns-2 network topology that e�ectively maps

the system model described above, leads us to the architecture of our simulation, shown in

Figure 6.1.

The topology of the simulation represents a single-hop WDM network, with N nodes, C

channels and with tunable transmitters and �xed receivers. Also it can only model systems

with collision-less scheduling algorithms.

The WDMScheduler object is the main component of the simulator architecture;

it holds all the necessary data required for the functioning of the simulator. It holds the

57

1

N

2

C

2

1

S

S

S

S

S

S

S

S

S

Channels

Nodes
WDM Queue

Simplex links with
WDM stubs

WDMScheduler Scheduling algorithm
object

Figure 6.1: Simulation architecture

following data structures:

- References to all the WDMQueue objects that are placed before the WDM links and

are registered with the WDM scheduler. It maintains a mapping from ns node id to

internal indices to be used as node and channel indices of the traÆc matrix and by

the schedule computation object.

- A reference to the schedule computation object.

- A collapsed traÆc demand matrix. The EF and AF slot demands are associated with

corresponding node, channel for scheduling the requested number of EF, AF packets

per schedule cycle.

- The actual schedule as computed by the schedule computation object, which forms

the input to the slot time handler.

- References to the objects that maintain per node per channel per code point delay

statistics and per channel per code point channel utilization statistics. Hence it needs

to know the list of code points being used in the simulation.

58

- The physical queues that are con�gured to queue EF, AF and BE packets. This

information is used to choose the queues from which to dequeue the next packet.

Further, the WDMScheduler class implements all the functionality required for the

appropriate initialization and manipulation of these objects. The WDMScheduler object

should be created during simulation initialization, which should be followed by setting

certain parameters, namely,

* channelBW and bytesPerPacket - the channel bandwidth and the packets size (in

bytes), are required to calculate the minimum slot time and calculating the channel

utilization.

* slottime - the slot time should be at least equal to the time it takes to transmit

one packet. The slot time could have been computed given that both the channel

bandwidth and the packet size are known, however keeping it con�gurable allows the

exibility of modeling the tunability characteristics of the transmitters.

* expectedSchLgt and slTolerance - the expected schedule length needs to be known;

�rstly to allocate best-e�ort traÆc given the reservations for other traÆc aggregates.

And more importantly, to keep the delay and delay jitter bounded. Since the actual

schedule length as computed by the scheduler may be greater than the expected

schedule length a tolerance value (percentage of expected schedule length) needs to

be speci�ed.

The object that computes the schedule needs to be created and installed before

packets can be scheduled; later subsections describe in detail how a WDM schedule is incor-

porated into ns, how the schedule computation object is installed and how newer scheduling

algorithms can be included into the simulator. Tcl scripts drive the schedule computation,

so that whenever the reservations change a schedule computation is initiated. When sched-

ule computation is requested the current schedule is deleted, the schedule computation

object computes the new schedule based on the current traÆc demand matrix, and the slot

time handler is scheduled. Once the schedule is computed, the schedule length is passed to

the channel decomposition object1 which computes the new indices into the schedule.

1The command install-chan-decomposer installs the channel decomposition object. The object should be
installed before schedule computation is initiated for channel decomposition to take e�ect.

59

The WDMQueue objects are created by the link creation routines. Every WD-

MQueue object thus created should be registered with the WDMScheduler. The WDM-

Scheduler expects certain functionality from any WDMQueue implementation; the abstract

class WDMSchedulerStub abstracts this required functionality. TheWDMQueue implemen-

tation is discussed in the next subsection.

Before we delve into the details of the WDM Queue implementation, let us discuss

about the link structure in ns. A simple link is built up from a sequence of connectors. ns

provides the instance procedure simplex-link fg to create a unidirectional point to point link

from one node to another. The following describes the syntax of the simplex link creation:

$ns simplex-link <from> <to> <bandwidth> <propagation-delay> <queue-type>

The command creates a link from node <from> to node <to>, with speci�ed <bandwidth>

and <propagation-delay> characteristics. It further creates and installs a queue of type

<queue-type> for the link. As shown in Figure 6.2, �ve instance variables de�ne a link:

head , queue , link , ttl and drophead . Of interest to us are the queue and link variables,

the queue holds the reference to the queuing object and the link holds the reference to the

object that models the transmission and propagation delays of the link.

head_
link_ ttl_

mred

(WDM Stub)

queue_

drophead_

Figure 6.2: Components of a Unidirectional Link in ns-2

A reference of each of the simplex links created is stored in the global Tcl variable

link , which is an associative array, with <from id:to id> as the key. (This is the reason

why we cannot have multiple point-to-point links between any two given nodes.)

WDM Queue structure

The WDMQueue object is the actual queue object that is placed before the link. The

WDMQueue object receives the packets that the node generates to be transmitted on the

60

associated channel. The primary responsibilities of the WDMQueue apart from the queuing

mechanism are:

- enque packets that are received by the queue; for our topology it means queue the

packets that are generated by the node to be forwarded on the associated channel

- ensure that packets are not deque'd at any other time apart from the time slot bound-

aries; this means that packets should be deque'd only by the time slot handler

- implement the basic functionality as expected by the WDMScheduler

The simulator component was designed with the view that the WDMQueue func-

tionality should not be tied to any underlying queuing mechanism. The abstract class

WDMSchedulerStub lists the interface between the WDMQueue and the WDMScheduler.

This interface associates certain generic functionality to a WDMQueue:

* getNextPacket - deque the next packet from the queue according to the appropriate

dequeuing mechanism. Also update the objects that maintain the associated delay

and channel statistics

* fwdPacket - since the queue is also a connector the implementation of this method

should forward the packet to its target

* other methods that are used to pass data to and forth from theWDMScheduler object.

The class hierarchy of a WDMQueue that provides the functionality of an edge

router of the Di�Serv architecture is shown in Figure 6.3. The dsREDQueue class im-

plements the queuing mechanism, and the modEdgeQueue contains the extensions to the

Nortel's Di�Serv implementation as discussed in a later subsection. The WDMQueue class

provides a concrete implementation of each of the pure virtual functions declared in the

WDMSchedulerStub class.

ns can be directed to create an object of the WDMQueue class and associate it

with the link. The queue object should then be registered with the WDMScheduler, with

the node id and channel id as parameters. TheWDMScheduler then installs the node id and

the channel id in to the node and channel map respectively, to associate node and channel

indices to them. The WDMScheduler passes required information to the WDMQueue (as

an instance of WDMSchedulerStub) and then stores a reference to the WDMQueue. The

following snippet demonstrates the above:

61

Queue

dsREDQueue

modEdgeQueue WDMSchedulerStub

WDMQueue

Figure 6.3: Class hierarchy of a WDM Queue

1. $ns simplex-link $node $chan $bandwidth $prop delay dsRED/WDMEdge

2. set que [[$ns link $node $chan] queue]

3. $wdmsch addQ $que [$node id] [$chan id]

Line 1,3 drive the actions that were mentioned above, while line 2 get the reference to the

queue object that was created during link creation. ($wdmsch holds the reference to the

WDMScheduler object.)

Integrating other queuing mechanisms

As mentioned above the design of the WDMQueue does not tie it to any queuing mech-

anisms. The implementation of the WDMQueue above which extended the Di�Serv edge

router functionality, provides an example of how a queuing mechanism could be extended

to incorporate it in to the simulator. A class that extends the basic queuing mechanism

and implements the WDMSchedulerStub interface quali�es to be used as a WDM Queue.

Ideally the integration should not require changes to the existing code, neither

should it require recompiling of the existing code base. However due to the way C++ im-

plements casting of a multiply inherited object, the following changes need to be done: Sup-

pose you de�ne the class in �le \newWDMQueue.h" and name the class newWDMQueue.

You will have to include \newWDMQueue.h" in ~ns/wdmsched/WDMScheduler.cc2 and

cast the object returned by TclObject::lookup() during the \addQ" command processing in

the WDMScheduler::command() method.

2The directory ~ns refers to the directory that contains ns-2 C++ code

62

Incorporating a WDM schedule into ns-2

A schedule needs to be computed before the WDM scheduler can start scheduling packets.

The traÆc demands from each node towards each channel have to be translated to the

number of slots required per schedule cycle. The traÆc demands for di�erent classes of

traÆc are aggregated and slots are allocated to best e�ort traÆc. For example, if your

simulation is con�gured with EF, AF and BE sources, the traÆc demands for the EF

and AF sources is converted to slot requirements and then these demands are aggregated.

This is then followed by slot allocation for BE traÆc to form a combined traÆc matrix.

For converting the bandwidth demands to slots and for allocating BE slots the expected

schedule length needs to be de�ned, along with a tolerance value (since the actual schedule

length could be greater than the expected schedule length). The scheduler that has been

installed during initialization of the WDM scheduler then computes the schedule. If the

actual schedule length is less than the expected length plus the tolerance, the demands can

be met else the demands need to be changed and the process repeated all over again. The

schedule computed in this manner is installed and will be used until the traÆc demands

change, when a new schedule is computed and installed.

The schedule could be computed locally or by a central scheduler. However, in our

case since the simulation does not intend to test the signaling (control) protocol we have

implemented the centralized approach.

At the beginning of each time slot, packets are transmitted by a slot time handler

(object of class slotTimeHandler (see ~ns/wdmsched/ WDMScheduler.fh,ccg)) , according

to the (possibly decomposed) schedule. The slot time handler executes every slottime and

does the following:

� For each channel

{ Identi�es the node that has exclusive right to transmit a packet on that channel.

{ Requests a packet destined towards the channel to be deque'd from that node's

queue. It does not instruct which traÆc aggregate the packet should belong to;

this information is local to the WDMQueue (refer to the discussion about the

WDMQueue implementation for more details).

{ Forwards the packet to that channel.

� At the end of each schedule cycle, instructs each WDM Queue to reinitialize its state

63

and starts from slot number 0.

� Schedules the next event to occur after a time o�set of \slottime "

Only the slot time handler should forward packets. The implementation of packet

forwarding in ns, attempts to forward a packet every time a new packet arrives, as well

as every time the link delay object completes the transmission of the packet currently be-

ing transmitted. To ensure that only the slot time handler forwards packets, the queue is

always maintained in the \blocked" state (see ~ns/queue.fh,ccg). Also the queue handler

parameter (object of class QueueHandler) sent by the queue should not be used for the

callback at the completion of a packet transmission, thus ensuring that the queue remains

in the blocked state.

Integrating scheduling algorithms into the scheduler

The WDM single hop simulator component was designed such that scheduling algorithms

could be independently implemented and integrated into the scheduler, without requir-

ing any changes to the central scheduler implementation. We have demonstrated this by

integrating two of our algorithms into the model.

The central WDM scheduler (see ~ns/wdmsched/ WDMScheduler.fh,ccg) refer-

ences to an object that implements the WDM scheduler interface (see ~ns/wdmsched/

WDMSchedulerInterface.fh,ccg). The WDM scheduler interface de�nes the functionality

that it expects from any schedule implementation. The object implementing the schedul-

ing algorithm is instantiated through Tcl scripts and should be registered with the central

scheduler before schedule computation can begin. We use the implementation of the optimal

schedule computation object as an example of the above-described procedure. Figure 6.4

shows the class hierarchy of the optimal schedule computation object (see ~ns/wdmsched/

OptimalScheduler.fh,ccg):

The WDM scheduler interface de�nes a method \getSchedule" that takes a traÆc

matrix and returns a schedule computed by the scheduling algorithm. Since the Opti-

malScheduler extends the WDM scheduler interface, it is also a TclObject and hence can

be created at simulation runtime by Tcl scripts as shown below:

1. set wdmsch [new WDMScheduler $nodes $chan]

2. set optimal-scheduler [new WDMScheduler/Optimal]

64

TclObject

WDMSchedulerInterface

OptimalScheduler

Figure 6.4: Class hierarchy of the optimal scheduler

3. $wdmsch install-scheduler $optimal-scheduler

The tcl code above is self-descriptive; the WDM scheduler computes the schedules on

\compute-schedule" command. The design also makes it possible to change the sched-

uler at runtime, just in case one wishes to experiment with multiple schedulers within a

single simulation run. The only requirement is to create an object of the class that imple-

ments the desired scheduling algorithm, and register it with the WDMScheduler object. On

the next \compute-schedule" command, the schedule is computed using the new scheduling

algorithm.

Our simulator provides two schedule algorithm implementations:

- Optimal algorithm based on the preemptive open shop scheduling algorithm [26]. The

object that implements this algorithm can be instantiated by creating an object of

class WDMScheduler/Optimal

- The scheduling heuristic proposed by Sivaraman [27]. The object that implements this

algorithm can be instantiated by creating an object of class WDMScheduler/Vijay

Statistics gathering

The statistics of interest are: delay, delay jitter, channel utilization and number of packet

drops; for each of the traÆc aggregates competing for the resources, namely, bu�er require-

ment and channel bandwidth. Of these delay, delay jitter and packet drops need to be

maintained per node per channel per traÆc aggregate, whereas channel utilization (alterna-

tively channel throughput) is monitored per channel per traÆc aggregate. Objects of class

WDMDelayStatistics maintain queuing delay and associated delay jitter and objects of class

WDMChannelStatistics maintain the statistics required for channel utilization calculation.

The queue implementation maintains the packet drop count, in our case the dsREDQueue

maintains the number of early drops and normal drops per code point (or traÆc aggregate).

65

Delay/Delay Jitter calculation: When a packet arrives at a node or is generated

by the node itself, it forwards the packet to the WDM queue. The WDMQueue::enque

method records the packet's arrival time in that packet's common header, in the times-

tamp (ts) �eld. Later when a packet is deque'd from the WDM Queue and before it is

forwarded to the next object on the link hierarchy, the queuing delay is calculated and the

WDMDelayStatistics' object is informed about it. The stats object uses this information

to calculate the mean queuing delay and the standard deviation of the samples from the

mean value. Similarly it also calculates the mean and standard deviation for the delay jit-

ter. The WDM scheduler has exported the following commands to fetch these values from

a tcl script: get-mean-delay, get-delay-variance, get-delay-jitter, get-mean-delay-jitter and

get-delay-jitter-variance; each of these commands take the node id, channel id and the code

point as parameters.

Calculation of channel throughput/channel utilization: Objects of class WDM-

ChannelStatistics maintain the number of packets that have been transmitted on the chan-

nel associated with that object. Since every packet is assumed to be of the same size, only

number of packets transmitted is counted (a byte count would over run relatively faster than

packet count for longer simulation runs). Every time a packet is transmitted, by any of the

nodes on the channel, the packet count is incremented. The WDM scheduler has exported

the following commands to fetch the channel utilization and throughput values from a tcl

script: get-channel-utilization and get-channel-throughput; each of these commands expects

a channel id and a code point as input parameters. Channel utilization is de�ned as the

ratio of bandwidth used to the channel bandwidth.

Note: The WDM scheduler needs to know the packet size and channel bandwidth

during initialization. This is done by setting the bound variables: channelBW & bytesPer-

Packet .

Packet drops: These are accounted by the queuing mechanism, see the WDM

Queue implementation for the functions that need to be implemented by a WDM Queue.

The number of early drops, normal drops and total number of drops can be fetched from

the WDM scheduler by the following commands: get-edrops, get-drops & get-total-drops;

each of the commands expect node id, channel id and code point as parameters.

Extensions to Nortel's Di�Serv implementation

Nortel's Di�Serv implementation classi�es packets based on the source and destination ad-

66

dresses carried by the packets. Speci�cally this implies that a <source, destination> pair

uniquely identi�es a policy entry. A policy entry is added by the following command:

$que addPolicyEntry <src id> <dst id> <policerType> <initial code point> <policer parameters>

What this means is that all packets originating at a source and destined to the same

destination experience the same quality of service. Clearly one might want to set up multiple

ows having the same <src, dst> but experiencing di�erent treatment. For example, there

may exist a audio stream
owing between source s and destination d and also a telnet

connection between the two. Obviously these two connections have di�erent delay and

throughput requirements and hence should experience di�erent treatment. Hence we need

a additional �eld in the header that could identify the type of packet, and we have used

the
ow id �eld of the IP header (see ~ns/ip.h). Now the tuple <src, dst,
owid> is used

to identify a
ow and hence a policer entry in the PolicyTable. Since it has been our intent

not to modify any of the �les of the ns distribution,
ow id was introduced in the policy

table entry by extending the struct policyTableEntry (see ~ns/dsPolicy.h). Similarly we

also extended the class PolicyTable to include a table of modi�ed policy table entries, and

also to associate each policy table entry to a <src, dst,
owid> tuple (see ~ns/wdmsched/

modDSPolicy.fh,ccg).

In the Di�Serv architecture only an edge router performs packet classi�cation and

policing. Hence only the edgeQueue class (see ~ns/edge.cc,h) maintains a policy table.

Hence a new edge queue class had to be implemented that extends the dsREDQueue (see

~ns/dered.cc,h) and maintains a policy table with the modi�cation mentioned above (see

~ns/wdmsched/ modDSEdge.fh,ccg). Apart from the fact that this queue maintains the

modi�ed policy table, its other functionality remains the same as edgeQueue class. An in-

stance of this modi�ed edge queue could be incorporated into the link creation in the usual

way by:

$ns simplex-link <src id> <dst id> <bw> <prop delay> dsRED/modEdge

This queue could be now used in building a Di�Serv enabled WDM single hop network as

described in preceding subsections.

67

Emulating EF PHB

Nortel's di�serv implementation does not tie code points to PHBs, as suggested by the

RFCs. It gives us the freedom of designing our experiment con�guration by using as many

code points as required and experimenting with the various possible combinations of the

policer and schedulers. As mentioned above the implementation supports the following

policer types: TSW2CM, TSW3CM, TokenBucket, srTCM, trTCM. Each policer has a

corresponding meter type associated with it. The implementation also provides the following

mechanisms for choosing the queue from which to transmit the next packet: RR, WRR,

WIRR, PRI. (refer to [7] for the policer parameters and related discussion).

However, the implementation does not specify which combination of the polic-

ing/metering and scheduling mechanisms yields a certain behavior. Hence it is a matter

of experimentation to determine the combination that yields the EF PHB. We found the

following con�guration parameters emulate an EF PHB:

1. $que addPolicyEntry <src> <dst> <�d> TokenBucket 10 <cir> <cbs>

2. $que addPolicerEntry TokenBucket 10 12

3. $que addPHBEntry 10 0 0

4. $que addPHBEntry 12 0 1

5. $que con�gQ 0 0 <min th> <max th> 0.0

6. $que con�gQ 0 1 0 0 1.0

In the snippet above, line 1 associated <src, dst, �d> tuple to a token bucket policer, sets

the initial code point and sets the token bucket parameters (the committed information

rate (CIR) and committed burst size (CBS)). Line 2 instructs the policer to downgrade the

packets carrying code point 10 to 12 if they are out-of-pro�le. Line 3 and 4 instruct the

queue to add the packets carrying code point 10 to physical queue 0 and virtual queue 0

(also know as drop precedence). And to add packets with code point 12 to physical queue

0 and virtual queue 1. The lines 5 and 6 set the RED queue con�guration parameters. The

parameters on line 5 direct the queue not to drop any in-pro�le packet and those on line 6

direct it to drop all out-of-pro�le packets. Thus emulating the EF PHB.

The next chapter presents delay-related performance measures for guaranteed traf-

�c in a single hop WDM network, using the WDM simulator component just described.

68

Chapter 7

Numerical Results

We presented the results related to channel throughput attainable by the schedul-

ing algorithms and their schedule lengths in Chapter 4.5. In this chapter we turn our

attention to results related to scheduling delays experienced by guaranteed service traÆc.

All the results presented in this chapter were obtained using the WDM component we im-

plemented on ns-2. We measure the average scheduling delay, variance1 in delay and delay

jitter statistics for each scenario, since we feel that together they characterize the delay-

related performance of the scheduling algorithms. We are interested only in the scheduling

delays packets experience, that is, we measure the time a packet spends in the queue waiting

to be scheduled for transmission. In the following discussion we use the term delay to mean

scheduling delay.

We have studied the e�ect of nonuniform traÆc on the schedule lengths and the

channel throughput in Chapter 4.5, in this chapter our primary experiments are based on

uniform traÆc distribution. Speci�cally, every node has the same traÆc requirement on all

the channels, and all the nodes share the bandwidth available on a channel equally. Nodes

reserve a part of their share for guaranteed service traÆc2. Since we consider a wavelength-

limited system the number of nodes far exceeds the number of channels, this along with

the uniform traÆc distribution guarantee that both the scheduling algorithms presented

in Chapter 4 compute optimal schedules. This means that the number of channels in the

system does not a�ect the overall scheduling delays experienced by packets. Hence to speed

1We plot the standard deviation, instead of variance, in delay to keep the same units as that for de-
lay/delay jitter.

2For our simulations we had CBR (constant bit rate) sources generating both the guaranteed and best
e�ort service.

69

up the simulation run time we use smaller number of channels, 6 to be precise. However,

what matters is the channel bandwidth. We present results for channel bandwidth of 1

Gbps and 10 Gbps.

We feel that guaranteed services will account for only a small percentage of the

total available bandwidth, hence we consider reservations of 10% to 40%. In a WDM sched-

ule, for that matter any TDM schedule, the scheduling delays are a function of the schedule

lengths. By design of the simulation, we are guaranteed to obtain optimal schedules, hence

the total demand (guaranteed service plus best e�ort) per node directly a�ect the delay

packets experience. We experiment with demands per node of 10 to 40, that is, for a sys-

tem with 200 nodes the schedule lengths would vary from 2000 to 8000 slots. We consider

�xed-sized packets, each of size 1000 bytes. Table 7.1 summarizes the number of slot reser-

vations per node, the total demand per node and the resulting schedule lengths that we used

in our simulations. As the table shows we execute simulations for four slot demands with

10% to 40% reservation, resulting in sixteen combinations for each of the scenario de�ned

below.

Demand per node (in slots) Schedule Length

Total Reservation for in slots in milliseconds
demand guaranteed services N=200 N=20 N=200 N=20

10% 20% 30% 40% 1 Gbps 10 Gbps 1 Gbps

10 1 2 3 4 2000 200 16 1:6 1:6
20 2 4 6 8 4000 400 32 3:2 3:2
30 3 6 9 12 6000 600 48 4:8 4:8
40 4 8 12 16 8000 800 64 6:4 6:4

Table 7.1: Reservations per node per cycle and resulting schedule lengths

Two sets of experiments were performed, one in which the guaranteed traÆc

was non-backlogged and in the other the guaranteed traÆc was backlogged. In the non-

backlogged case the guaranteed traÆc sources sent packets exactly at the committed infor-

mation rate (CIR). Further, best e�ort traÆc is assumed to be always backlogged. Within

each case we had two sets of experiments one in which the schedule used to transmit packets

was exactly as generated by the scheduling algorithm. And for the other set, the schedule

was �rst subject to channel decomposition (discussed in Chapter 5), that is, once the sched-

ule length (M) is obtained channel decomposition is applied to the indices of the schedule

70

0 to M � 1 and the resulting indices are then used to index the schedule. As discussed in

Chapter 5 channel decomposition distributes time slots that otherwise would be adjacent

evenly across the schedule. As mentioned above, we consider channel bandwidths of 1 and

10 gigabits per second (Gbps).

In the di�erentiated services architecture [13] guaranteed service traÆc is policed

by approprite policers. Our simulations consider a traÆc mix of EF [14] and best e�ort

services. EF sources are normally policed by a Token Bucket policer. The token bucket

policer is parameterized by a committed information rate (CIR) and committed burst size

(CBS), that is, a token bucket policer considers a burst packets, of size equal to the CBS,

as in-pro�le. We consider the e�ect of this committed burst size parameter of the token

bucket policer on the delay experienced by packets. The scenarios are summarized in Table

7.2.

TraÆc Channel Channel Number CBS
Decomposition bandwidth of Nodes

no 1 Gbps 200 1-12
Non-backlogged 20 1-12

yes 1 Gbps 200 1-12
20 1-12

1 Gbps 200 1-12
no 20 1-12

Backlogged 10 Gbps 200 4,6,8,10,12
1 Gbps 200 1-12

yes 20 1-12
10 Gbps 200 4,6,8,10,12

Table 7.2: Simulation scenarios.

We run simulations for 1; 000; 000 time slots for channel bandwidth of 1 Gbps and

for 5; 000; 000 time slots for channel bandwidth of 10 Gbps, corresponding to 8 and 4 seconds

of simulation time respectively. Each point on the graphs corresponds to the average of the

corresponding parameter at all the nodes on all the channels. For instance, a point on the

graph shown in Figure 7.1, corresponds to the average of the scheduling delay experienced

by the packets at each of the 200 nodes on each of the six channels.

Graphs shown in Figures 7.1-7.3 and 7.7-7.9 plot average delay, delay jitter and

standard deviation of delay, against the committed burst size (CBS) granted to the guaran-

71

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Committed burst size (in packets)

A
ve

ra
ge

 d
el

ay
 (

in
 s

ec
on

ds
)

Demand=10, non BL
Demand=20, non BL
Demand=30, non BL
Demand=40, non BL
Demand=10, BL
Demand=20, BL
Demand=30, BL
Demand=40, BL

Figure 7.1: Average scheduling delay comparision for non-backlogged and backlogged traÆc
on a 1 Gbps channel with 200 nodes, for a reservation of 40%

0 2 4 6 8 10 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Committed burst size (in packets)

D
el

ay
 J

itt
er

 (
in

 s
ec

on
ds

)

Demand=10, non BL
Demand=20, non BL
Demand=30, non BL
Demand=40, non BL
Demand=10, BL
Demand=20, BL
Demand=30, BL
Demand=40, BL

Figure 7.2: Delay Jitter comparision for non-backlogged and backlogged traÆc on a 1 Gbps
channel with 200 nodes, for a reservation of 40%

72

0 2 4 6 8 10 12
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Committed burst size (in packets)

S
ta

nd
ar

d
de

vi
at

io
n

of
 d

el
ay

 (
in

 s
ec

on
ds

)

Demand=10, non BL
Demand=20, non BL
Demand=30, non BL
Demand=40, non BL
Demand=10, BL
Demand=20, BL
Demand=30, BL
Demand=40, BL

Figure 7.3: Standard deviation in scheduling delay for non-backlogged and backlogged traÆc
on a 1 Gbps channel with 200 nodes, for a reservation of 40%

teed traÆc sources, for varying demands per node (equivalently, varying schedule lengths).

CBS is represented in units of packets, hence a CBS value of 12 packets corresponds to

12� 1000� 8 = 96Kbits. Figure 7.1 compares the average scheduling delay packets experi-

ence on a system that has non-backlogged guaranteed sources, with the delay experienced

on a system that has backlogged guaranteed sources. It can be observed that in a non-

backlogged system packets experience identical delays for all the values of CBS, this is due

to the fact that in such systems the queues never build up. Delay increases with an increase

in the schedule length, but it can be observed that delays are less than the length of a

schedule. For instance, with a demand of 10 per node in a system with 200 nodes, the

optimal schedule length would be 2000 slots, equal to 16ms on a 1 Gbps channel, and the

average delay experienced is close to 10ms < 16ms. The delay observed in this case would

be the best case with a non-decomposed channel schedule. However, in the backlogged

traÆc case, the scheduling delay increases almost linearly with CBS. At lower values of

CBS, lesser bursts are allowed restricting the queue build up and resulting in lower delays.

For higher values of CBS packets accepted by the policer exceed the rate at which they are

transmitted, hence queues build up and the resulting delays are no longer bound by the

73

10 20 30 40
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Total slot demand per node

A
ve

ra
ge

 d
el

ay
 (

in
 s

ec
on

ds
)

10%, CBS=12
20%, CBS=12
30%, CBS=12
40%, CBS=12
10%, CBS=6
20%, CBS=6
30%, CBS=6
40%, CBS=6

Figure 7.4: Average scheduling delay comparision for committed burst size of 6, 12 packets
on a 1 Gbps channel with 200 nodes, for 10%� 40% reservation

schedule lengths.

Figure 7.2 compares delay jitter3 in systems with non-backlogged and backlogged

guaranteed traÆc sources. Again the delay jitter experienced by the packets in a system

with non-backlogged guaranteed traÆc is identical for all the values of CBS. As with the

average delay, the delay jitter is also bounded by the schedule length. Delay jitter in a

system with backlogged guaranteed service traÆc increases linearly, after a certain lower

CBS value. It should be noted that the best case delay jitter values are greater than the

average delays and are very close to the schedule lengths. This can be attributed to the fact

that packets are transmitted in bursts, which reduces the average delay, however the delay

jitter increases (see Chapter 5). Figure 7.3 compares the standard deviation of delay in

systems with non-backlogged and backlogged guaranteed traÆc sources. In both the cases,

the higher the schedule lengths the higher the deviation. Systems with non-backlogged

guaranteed traÆc experience identical deviations for all values of CBS. In systems with

backlogged guaranteed traÆc the deviation slightly increases with increase in CBS.

3Delay jitter is calculated as the di�erence between the maximum and minimum delays experienced by
packets.

74

10 20 30 40
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Total slot demand per node

D
el

ay
 ji

tte
r

(in
 s

ec
on

ds
)

10%, CBS=12
20%, CBS=12
30%, CBS=12
40%, CBS=12
10%, CBS=6
20%, CBS=6
30%, CBS=6
40%, CBS=6

Figure 7.5: Delay Jitter comparision for committed burst size of 6, 12 packets on a 1 Gbps
channel with 200 nodes, for 10%� 40% reservation

10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

0.03

Total slot demand per node

S
ta

nd
ar

d
de

vi
at

io
n

of
 D

el
ay

 (
in

 s
ec

on
ds

)

10%, CBS=12
20%, CBS=12
30%, CBS=12
40%, CBS=12
10%, CBS=6
20%, CBS=6
30%, CBS=6
40%, CBS=6

Figure 7.6: Standard deviation in scheduling delayfor committed burst size of 6, 12 packets
on a 1 Gbps channel with 200 nodes, for 10%� 40% reservation

75

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Committed burst size (in packets)

A
ve

ra
ge

 d
el

ay
 (

in
 s

ec
on

ds
)

Demand=10, no CD
Demand=20, no CD
Demand=30, no CD
Demand=40, no CD
Demand=10, CD
Demand=20, CD
Demand=30, CD
Demand=40, CD

Figure 7.7: Average scheduling delay comparision with and without channel decomposition
on a 1 Gbps channel with 200 nodes, for a reservation of 40%

Ideally, scheduling algorithms should decouple bandwidth and delay, that is, it

should be possible for a traÆc aggregate to obtain a smaller delay while still reserving only

a small bandwidth. However, in the case of TDM-style schedules, where packet streams are

scheduled in cycles, inherently bandwidth and delay are tied to each other. In Figures 7.4-

7.6 we plot the average delay, delay jitter and standard deviation of delay for 10% to 40%

reservation for varying demands per node. It was observed above that delay and delay jitter

increase linearly with CBS, hence we use this opportunity to compare the delay-performance

with a CBS of 6 and 12 packets (corresponding to 48Kbits and 96Kbits, respectively). For

all the remaining simulations we only consider systems with backlogged guaranteed traÆc

sources.

Figures 7.4 and 7.5 con�rm our intuition that higher reservation results in lower

average scheduling delay and delay jitter. Also for a given reservation, the scheduling delay

and delay jitter increase with an increase in schedule lengths. The delay and delay jitter

for a burst size of 6 are considerably lower than that with a burst size of 12.

We now present results obtained after applying channel decomposition, as was

described in Chapter 5. Channel decomposition results in adjacent slots being spaced well

76

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Committed burst size (in packets)

D
el

ay
 J

itt
er

 (
in

 s
ec

on
ds

)

Demand=10, no CD
Demand=20, no CD
Demand=30, no CD
Demand=40, no CD
Demand=10, CD
Demand=20, CD
Demand=30, CD
Demand=40, CD

Figure 7.8: Delay Jitter comparision with and without channel decomposition on a 1 Gbps
channel with 200 nodes, for a reservation of 40%

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Committed burst size (in packets)

S
ta

nd
ar

d
de

vi
at

io
n

of
 D

el
ay

 (
in

 s
ec

on
ds

)

Demand=10, no CD
Demand=20, no CD
Demand=30, no CD
Demand=40, no CD
Demand=10, CD
Demand=20, CD
Demand=30, CD
Demand=40, CD

Figure 7.9: Standard deviation in scheduling delay with and without channel decomposition
on a 1 Gbps channel with 200 nodes, for a reservation of 40%

77

10 20 30 40
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Total slot demand per node

A
ve

ra
ge

 d
el

ay
 (

in
 s

ec
on

ds
)

10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, CD
20%, CD
30%, CD
40%, CD

Figure 7.10: Average scheduling delay comparision with and without channel decomposition
on a 1 Gbps channel with 200 nodes, for committed burst size of 12 packets

apart within the schedule. We expect this behavior to reduce the delay, delay jitter and

standard deviation. Figures 7.7-7.9 plot the delay, delay jitter and standard deviation of

delay, against CBS, for varying demands per node, with the schedules being used with and

without channel decomposition. Figure 7.7 shows that the use of channel decomposition,

in general, results in lower scheduling delays. And channel decomposition is more e�ective

for higher schedule lengths. It can be seen that for higher demands per node the scheduling

delays are identical for lower CBS values, and then increase linearly with CBS. Figure 7.9

shows that channel decomposition results in lower standard deviation of delay.

Figure 7.8 shows an interesting result, in that, for higher values of CBS, delay

jitter experienced by packets served in longer schedules are equal to that experienced by

packets served by smaller schedules. This means that with channel decomposition we can

enjoy the
exibilility of having higher demands per node, which allows a higher granularity

of reservations. For instance, a total demand per node of 10 slots facilitates the granularity

of reservation to be 10%, with a total demand of 40 slots per node the granularity of

reservation can be as low as 2:5%. With this
exibility di�erent nodes can allocate di�ering

percentages for guaranteed traÆc sources.

78

10 20 30 40
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Total slot demand per node

D
el

ay
 J

ite
r

(in
 s

ec
on

ds
)

10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, CD
20%, CD
30%, CD
40%, CD

Figure 7.11: Delay Jitter comparision with and without channel decomposition on a 1 Gbps
channel with 200 nodes, for committed burst size of 12 packets

10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

0.03

Total slot demand per node

S
ta

nd
ar

d
de

vi
at

io
n

of
 d

el
ay

 (
in

 s
ec

on
ds

)

10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, CD
20%, CD
30%, CD
40%, CD

Figure 7.12: Standard deviation in scheduling delay with and without channel decomposi-
tion on a 1 Gbps channel with 200 nodes, for committed burst size of 12 packets

79

10 20 30 40
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Total slot demand per node

A
ve

ra
ge

 d
el

ay
 (

in
 s

ec
on

ds
)

10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, with CD
20%, with CD
30%, with CD
40%, with CD

Figure 7.13: Average scheduling delay comparision with and without channel decomposition
on a 10 Gbps channel with 200 nodes, for committed burst size of 12 packets

Figures 7.10-7.12 plot the delay, delay jitter and standard deviation of delay for

10% to 40% reservation for varying demands per node, with the schedules being used with

and without channel decomposition. The results show that channel decomposition reduces

delay (delay jitter, standard deviation) in general, and is more e�ective for longer schedule

lengths and for higher reservations. All the results presented upto this point used a 1 Gbps

channel. Figures 7.13-7.15 compare the performance of channel decomposition on a 10 Gbps

channel, and we observe similar behavior as in Figures 7.10-7.12.

The next chapter summarizes our work and presents directions for future research.

80

10 20 30 40
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Total slot demand per node

D
el

ay
 J

itt
er

 (
in

 s
ec

on
ds

)
10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, with CD
20%, with CD
30%, with CD
40%, with CD

Figure 7.14: Delay Jitter comparision with and without channel decomposition on a 10
Gbps channel with 200 nodes, for committed burst size of 12 packets

10 20 30 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Total slot demand per node

S
ta

nd
ar

d
de

vi
at

io
n

of
 d

el
ay

 (
in

 m
ill

is
ec

on
ds

)

10%, no CD
20%, no CD
30%, no CD
40%, no CD
10%, with CD
20%, with CD
30%, with CD
40%, with CD

Figure 7.15: Standard deviation in scheduling delay with and without channel decomposi-
tion on a 10 Gbps channel with 200 nodes, for committed burst size of 12 packets

81

Chapter 8

Summary and Future Research

8.1 Summary

We have considered the problem of allocating slots to best e�ort traÆc streams

in a max-min fair manner, for arbitrary guaranteed service traÆc demands in a broadcast

single hop optical network. Our objective was to allocate excess (or a speci�ed number of)

slots to best e�ort traÆc, to increase channel utilization, without considerably increasing

the schedule lengths. We also wanted to study the e�ect of the scheduling algorithms

on the delay-related performance measures, namely, average scheduling delay, delay jitter

and delay variance. We showed that best e�ort allocation using the schemes we proposed,

BE-OS with preemptive scheduling algorithms and BE-OSTL with nonpreemptive OSTL

scheduling algorithms, increases the channel utilization without considerably increasing

schedule lengths. Speci�cally, in the case of preemptive open-shop scheduling algorithm the

BE-OS scheme increases the channel utilization to 100% without increasing the schedule

length. Both the scheduling algorithms we considered have slightly higher running times,

however, in practical IP Di�Serv environment we expect reservations to be slowly varying.

Hence it is reasonable to use the higher complexity scheduling algorithms to achieve higher

channel utilization.

8.2 Future Research

The scheduling algorithms we considered serve traÆc aggregates in TDM cycles.

Due to packets being transmitted in schedules, delay is coupled with bandwidth reserva-

82

tions, that is, traÆc aggregates would experience lower delay by reserving higher bandwidth.

Ideally, however, aggregates should be able to demand lower scheduling delays while reserv-

ing lower bandwidth. Algorithms to schedule packets in a single hop WDM network need

to be developed that can decouple delay and bandwidth.

In a single-hop WDM network having �xed receivers, the unicast and multicast

traÆc can be scheduled by a single scheduling algorithm, however, research needs to be

done to identify and address the issues for the support of quality-of-service for multipoint

communication in a broadcast WDM network.

Future areas for research to incorporate the schemes, we discussed, in the Helios

optical access network testbed would be development of state machines for the protocols

for distributing the global traÆc matrix before best e�ort allocation. Also the protocols

need to redesigned for eÆcient hardware implementation. Further, mechanisms need to be

speci�ed for aggregating traÆc destined to di�erent nodes receiving data over the same

channel to isolate individual traÆc aggregates (protection) and ensure fairness.

83

Bibliography

[1] DARPA Next Generation Internet (NGI) Program.

http://www.darpa.mil/ito/research/ngi/index.html.

[2] Helios: Regional Testbed Optical Access Network for IP Multicast and Di�erentiated

Services. http://www.anr.mcnc.org/projects/Helios/Helios.html.

[3] M. Kuznetsov et al. A next-generation optical regional access network. IEEE Com-

munications Magazine, 38(1):66{72, January 2000.

[4] E. Hall et al. The Rainbow-II gigabit optical network. IEEE Journal Selected Areas

in Communications, 14(5):814{823, June 1996.

[5] R. E. Wagner et al. MONET: Multiwavelength optical networking. Journal of Light-

wave Technology, 14(6):1349{1355, June 1996.

[6] ns. Network Simulator. http://www.isi.edu/nsnam/ns/.

[7] Di�serv implementation. Nortel Network's Di�serv implementation in ns.

[8] O. Gerstel, B. Li, A. McGuire, G. N. Rouskas, K. Sivalingam, and Z. Zhang (Eds.).

Special issue on protocols and architectures for next generation optical WDM networks.

IEEE Journal Selected Areas in Communications, 18(10), October 2000.

[9] Category: Adjustable Fiber Grating Filters. 1999 Optical Fiber Communication con-

ference proceedings.

[10] B. Mukherjee. WDM-Based local lightwave networks Part I: Single-hop systems. IEEE

Network Magazine, pages 12{27, May 1992.

84

[11] E. Modiano. WDM-Based packet networks. IEEE Communications Magazine, pages

130{135, March 1999.

[12] K. Nichols, et al. De�nition of the Di�erentiated Services Field (DS Field) in the IPv4

and IPv6 Headers. RFC 2474, Dec. 1998.

[13] S. Blake, et al. An Architecture for Di�erentiated Services. RFC 2475, Dec. 1998.

[14] V. Jacobson, et al. An Expedited Forwarding PHB. RFC 2598, June 1999.

[15] J. Heinanen, et al. Assured Forwarding PHB Group. RFC 2597, June 1999.

[16] Kalevi Kilkki. Di�erentiated Services for the Internet. Macmillan Technical Publishing,

1999.

[17] X. Xiao and L. Ni. Internet QoS: A big picture. IEEE Network, pages 8{18,

March/April 1999.

[18] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking, pages: 397{413, 1(4), Aug. 1993.

[19] D. Clark and Wenjia Fang. Explicit allocation of best-e�ort packet delivery service.

IEEE/ACM Transactions on Networking, pages: 362{373, 6(4), Aug. 1998.

[20] W. Fang, N. Seddigh and B. Nandy. A Time Sliding Window Three Colour Marker

(TSWTCM). RFC 2859, June 2000.

[21] S. Shenker, C. Partridge and R. Guerin. Speci�cation of Guaranteed Quality of

Service. RFC 2212, Sept. 1997.

[22] J. Heinanen and R. Guerin. A Single Rate Three Color Marker. RFC 2697, Sept.

1999.

[23] J. Heinanen and R. Guerin. A Two Rate Three Color Marker. RFC 2698, Sept. 1999.

[24] Douglas B. West. Introduction to Graph Theory. Second Edition, Prentice Hall, 2001.

[25] John E. Hopcroft and Richard M. Karp. An n5=2 algorithm for maximum matchings

in bipartite graphs. SIAM Journal of computing, 2(4): 225{231, December 1973.

85

[26] Teo�lo Gonzalez and Sartaj Sahni. Open shop scheduling to minimize �nish time.

Journal of the Association for Computing Machinery, 23(4): 665{679, October 1976.

[27] V. Sivaraman. TDM schedules for broadcast WDM networks with arbitrary transceiver

tuning latencies. Department of Computer Science, NCSU, Raleigh, NC, Master's

thesis 1995.

[28] V. Sivaraman and G. N. Rouskas. Packet scheduling in broadcast WDM networks with

arbitrary transceiver tuning latencies. IEEE/ACM Transactions on Networking, 5(3):

359{370, June 1997.

[29] V. Sivaraman and G. N. Rouskas. HiPeR-l: a high performance reservation protocol

with look-ahead for broadcast WDM networks. In Proceedings of IEEE Computer and

Communications, INFOCOM '97, vol. 3, pages 1270{1277, 1997.

[30] M. Maode, B. Hamidzadeh and M. Hamdi. EÆcent Scheduling Algorithms for Real-

time service on WDM Optical networks. Proc. 7th International conference on Com-

puter Communications and Networks, 1998.

[31] Maode Ma and Mounir Hamdi. Providing Deterministic Quality-of-Service Guarantees

on WDM Optical Networks. IEEE Journal on Selected Areas in Communications,

18(10), October 2000.

[32] Itamar Elhanny, Jacob Nir, Dan Sadot. A Contention-free packet scheduling scheme

for provision of Quality-of-service in Tbit/sec WDM networks. In Optical Networks

magazine, pages 19{24, July 2000.

[33] Anthony Kam, Kai-Yeung Siu, Richard Bary and Eric Swanson.. Toward best-e�ort

services over WDM networks with fair access and minimum bandwidth guarantee.

IEEE Journal on Selected Areas in Communications, 16(7), Sept. 1998.

[34] Anothony C. Kam and kai-Yeung Siu. A real-time distributed scheduling algorithm for

supporting QoS over WDM networks. In Proceedings of SPIE, vol. 3531, Nov. 1998.

[35] Anthony Kam, Kai-Yeung Siu, Richard Bary and Eric Swanson.. A Cell switching

WDM broadcast LAN with bandwidth guarantee and fair access. IEEE Journal of

Lightwave technology, 16(12), Dec. 1998.

86

[36] Hung-Ying Tyan et al. On supporting time-constrained communications in WDMA-

based star-coupled optical networks In Proc. IEEE 17th Real-Time Systems Sympo-

sium, Dec. 1996.

[37] Bin Wang, Chao-Ju Hou and Ching-Chih Han. On dynamically establishing and ter-

minating Isochronous message streams in WDMA-based local area lightwave networks.

In Proceedings of INFOCOM '97, pages 1261{1269, IEEE 1997.

[38] Anlu Yan, Aura Ganz and C. M. Krishna. A distributed adaptive protocol providing

Real-Time services on WDM-based LAN's. IEEE Journal of Lightwave technology,

14(6), June 1996.

[39] S. Selvakennedy et al. Dynamic Scheduling scheme for handling traÆc multiplicity

in Wavelength division multiplexed optical networks. Computer Communications and

Networks, pages 344{399, IEEE 1999.

[40] Laura E. Jackson and George N. Rouskas. Optimal scheduling of periodic tasks on mul-

tiple identical processors. Dept. of Computer Science, NCSU, Raleigh, NC, Technical

Report 1998.

[41] Magnus Jonsson, Klas Borjesson and Magnus Legardt. Dynamic Time-Deterministic

traÆc in a �ber-optic WDM star network. Real-Time Systems, pages 25{33, IEEE,

1997.

[42] M. Jonsson, A. Ahlander, M. Taveniku, and B. Svensson. Time-deterministic WDM

star network for massively parallel computing in radar systems. Proc. Massively Parallel

processing using optical interconnections, pages 85{93, Oct. 1996.

[43] Marco Ajmone Marson et al. All-Optical WDM multi-rings with Di�erentiated QoS

IEEE Communications magazine, Feb. 1999.

[44] George N. Rouskas and Mostafa H. Ammar. Analysis and Optimization of transmission

schedules for Single-Hop WDM Networks. IEEE/ACM Transactions on Networking,

3(2), pages 211{221, April 1995.

[45] F. Jia, B. Mukherjee and J. Iness. Scheduling variable-length messages in a single-hop

multichannel local lightwave network. IEEE/ACM Transactions on Networking, 3(4),

pages 477{487, August 1997.

