
ABSTRACT

BARADWAJ, NIKHIL. Traffic Quantization and its Application to QoS Routing. (Under

the direction of Professor George N. Rouskas).

In today’s high speed networks, the data transmission rate available is usually a

multiple of some base rate. An example is that of the T-carrier circuits having transmission

rates that are a multiple of the fractional T1 system which is 64 Kbps. The base rate

usually depends on the characteristics of the data being transmitted such as audio, video

or other types of data. Our objective is to design efficient heuristics to quantize the user

traffic demands based on bandwidth into multiples of such base rates such that the excess

bandwidth spent due to quantization is minimized. In doing so, our contribution is twofold.

First, there is always a penalty that one has to pay to reconfigure the system for each

transmission. This reconfiguration time could be due to several factors such as memory

operations and table lookups. Our heuristics try to minimize such control/management

costs. Secondly, our schemes have the flexibility on the values that the base rate can take

which is consequently not hardwired into the system. Our work is greatly influenced by

the extensive study in the field of location theory. We achieve our goal by modifying the

p-median problem and solving it efficiently using dynamic programming and exploiting the

properties of totally monotone matrices. In spite of having an additional constraint of base

rate to quantize the traffic, we show that our heuristics have similar bandwidth losses when

compared to previous study in the area of traffic quantization. In addition, we save more on

control and management costs which are incurred during the reconfiguration of each flow.

We also demonstrate through simulations that the blocking probability, defined as the ratio

of number of flows blocked due to unavailability of the residual bandwidth in the network

to the total number of flows, using our scheme is comparable to that of the continuous

network.
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Chapter 1

Introduction

1.1 Background and Related Work

The traditional p-median problem asks us to find, for a given set of n demand

points, a set of p supply points such that the distance between each demand point and its

nearest service point is minimized. This problem, which plays a significant role in the study

of location theory, has been addressed many times in literature previously and has several

applications. [3] explains the variations in such a problem and describes a solution to the

p-median problem on the real line. [5] shows that the rectilinear and Euclidean versions of

the p-median problem in the plane is NP-hard. The traditional p-median problem and the

simple plant location models are also solved by implementing the computational geometry

approach of [2].

[4] extends the traditional p-median problem by adding a restriction, requiring

the selected supply point for a demand point to be equal to or to the right of it in the real

line. They call this the directional p-median problem and show that it can be solved in

polynomial time in one dimension. This variant of the p-median problem arises naturally

in certain quantization applications where it is important to quantize a set of inputs taking

continuous values to a quantization level with equal or higher value. [4] gives examples for

such applications.

One such application is in the control and management of packet switched net-
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works. A transmission link in a typical backbone network operate on data rates between

2.5 and 10 Gbps and carry thousands of independent traffic flows. Each flow could be

characterized by several traffic parameters such as bandwidth, burst size, delay bound etc.

Accommodating such flows gives rise to a serious scalability issue for a number of control

and management functions. The service provider would like to group (quantize) similar

flows into a single service level to simplify to control and management tasks. Each flow

would then receive at least the requested amount of each resource but not necessarily the

exact amount.

Another application is in the preemptive scheduling of periodic tasks on multi-

processor systems. Each task is characterized by its computation time which is the number

of unit length sub tasks and its period within which the processing of sub tasks is to be

completed. A processor works with at most one task at a time and each task is processed

by no more than one processor at a time. When the number of tasks is very large, such

as a web server of a popular web site, even the fastest scheduling algorithm may not be

appropriate. In such cases, we quantize the set of n tasks into a small, fixed set of offered

rates with each task guaranteed to receive at least the required amount of computation

time for each period. A quicker algorithm can then be devised which is independent of the

number of tasks.

In both the above applications, while quantization has the disadvantage of requir-

ing more resources ( processor time, bandwidth) than a continuous rate system, the tradeoff

is paid by the resulting gains in speed and simplicity.

1.2 Thesis Organization

In our work, we extend the directional p-median problem by adding an additional

constraint. In Chapter 2, we formally define the directional p-median problem and give

a solution in O(np) time. In Chapter 3, we introduce an additional constraint to the

directional p-median problem where we require each of the supply points chosen to be a

multiple of some basic unit r. We extend the solution presented in Chapter 2 to solve this

problem and also give heuristic approaches to improve on the time complexity at the cost

of accuracy. We present several numerical results and discussions on the various heuristics

in Chapter 4. Chapter 5 is a simulation study which gives an insight on the blocking
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probabilities when the different algorithms are used, followed by the summary of our work

and the direction of our work that can be taken in future in Chapter 6.
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Chapter 2

p-Median Problem and Its Solution

This chapter looks into the problem of quantization and the approach to solve it by

mapping the problem to an instance of the directional p-median problem on the number line.

This idea which has been presented by [4] can then be solved using dynamic programming to

get efficient complexity bounds. We first present the concept of location problem specifically

defining the traditional p-median problem. We then look at a special case of the problem,

the directional p-median problem and how it solves the quantization problem. Presenting a

straightforward dynamic programming algorithm, we give an improvement to the algorithm

by introducing the concept of totally monotone arrays and present the implementation

details.

2.1 The Location Model on the Number Line

In the general facility location model, given n points in [0,1], identified as a set of

demand points, the objective is to select a subset of these points as the location to setup

facilities, called the service or supply points, that will serve the set of demand points.

The utility of a demand point is defined as a function of the distance between it and the

closest facility that services it. The objective of such models is to minimize the overall

utility of the system by choosing appropriate locations for setting up the facilities. This

model extends to several well known classical location problems like the p-median problem,
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p-coverage problem etc., whose detailed description can be found in literature.

2.1.1 The Traditional p-median Problem

D:

S:

0 1

d d d d d d d d1 2 3 d4 d5 6 7 d8 9 d10 11 12 d13 d14 d15

4
s

2
s

3
ss

1

Figure 2.1: Mapping a set of demand points D to a set of service points S in traditional
p-median problem

The traditional p-median problem can be defined as follows: Given a set of n

demands points D = {d1, d2, . . . , dN}, find the set of p service points S = {s1, s2, . . . , sP }
such that the total distance between each demand point and its nearest service point is

minimum. Formally, the p-median problem can be formulated as follows:

Minimize

n∑

i=1

ω̄(di, S)
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subject to

d1 ≤ d2 ≤ . . . ≤ dN

d1, d2, . . . , dN ∈ [0, 1]

ω̄(di, S) = min{| d− di |: d ∈ S}

S ⊆ D

|S| = p

di ∈ D

1 ≤ p ≤ n

where ω̄(di, S) is distance between di and its nearest supply point

2.1.2 The Directional p-median Problem

D:

S:

0 1

d d d d d d d d

s

1 2 3

1
s s s

432

d4 d5 6 7 d8 9 d10 11 12 d13 d14 d15

Figure 2.2: Mapping a set of of demand points D to a set of service points S in directional
p-median problem
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Here we look at a slightly modified version of the p-median problem where the

nearest service point for a given demand point has to be greater than or equal to the

demand point under consideration. In other words, the problem is directional. Our new

objective function can then be formulated as

Obj(S) =
p∑

j=1

∑

di∈Dj

(sj − di)

subject to

d1, d2, . . . , dN ∈ [0, 1]

S ⊆ D

|S| = p

d1 ≤ d2 ≤ . . . ≤ dN

s1 ≤ s2 ≤ . . . ≤ sP

sj−1 < di ≤ sj

Dj ∈ D

As an example for an application of such a problem, if a network user requests a

certain amount of bandwidth, the network provider should provide at least the requested

bandwidth. Hence when all the user bandwidths, which correspond to the demand points,

are quantized to a set of service bandwidths, they have to be mapped to a service bandwidth

that is greater than or equal to itself. The directional p-median problem fits appropriately

for our problem of quantizing user demand bandwidths. In our problem of quantizing the

requested demand points, the above defined Obj(S) is the excess resources that is to be

spent in order to service the demand points.

2.2 The O(n2p) Dynamic Programming Algorithm

The quantization problem has an input of the set D = {d1, d2, . . . , dN} of demand

points that are sorted in non-decreasing order of their traffic demands di. In order to

describe the dynamic programming algorithm to find the optimal set S of service points, we
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define the cost function Ψ(Rn, p) as the minimum cost for mapping all points in set Rn to

p service points where Rn is the set of requests from D with the n smallest traffic demands.

Obj(S) = Ψ(RN , p)−
n∑

i=1

di

In practical terms, the cost function Ψ(RN , p) is the total bandwidth spent in the

network after quantization where as the objective function Obj(S) is the excess bandwidth

spent in the network due to quantization. RN = D and Rn =
⋃n

i=1{di},n = 1, 2, . . . , N .

We compute Ψ(R, P ) recursively using

Ψ(Rn, 1) = ndn, n = 1, . . . , N

Ψ(R1, p) = d1, p = 1, . . . , P

Ψ(Rn, p + 1) = min
q=l,...,n−1

{Ψ(Rq, p) + (n− q)dn}, p = 1, . . . , P − 1;n = 2, . . . , N

As can be seen from the above equations, when p = 1, all the requested points are

mapped to the last demand point. The cost of mapping only one point to p service points

is the demand point itself as there are no other points. The recursive equation can be

explained by noting that service level p+1 must be the demand point dn and the remaining

p optimal service levels must be assigned values from di. If the pth service level is dq where

q is between p and n − 1, the optimal cost is given by the right hand side of the recursive

equation by taking the minimum over all the possible values of q. It can be seen that the

above algorithm has an overall time complexity of O(n2p).

2.3 A Better Solution - The DPM1 Algorithm

In this section we present an algorithm with a better complexity bound when

compared to the previous section. We exploit the property of totally monotone matrices

and Monge property in our problem to formulate a better dynamic programming algorithm

and present its implementation details.
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0 1 2 3 54
0

2(d  − d ) 1

(d  − d)+(d  − d )

(d  − d )+(d  − d )+(d  − d )

(d  − d )+ (d  − d )+(d  − d )+(d  − d )

3 32 1

4 3 4 2 4 1

5 4 5 3 5 2 15

0

(d  − d )

d  − d )+(d  − d )

(d  − d )+(d  − d )+(d  − d )

3 2

4 43 2

5 5 54 3 2

0

(d  − d )

(d  − d )+(d  − d )

4 3

5 4 5 3

0

(d  − d )5 4

0

Figure 2.3: DAG representation of an instance of directional p-median problem with n = 5
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2.3.1 Monge Condition and Totally Monotone Matrices

A matrix M having real entries is said to be monotone if i1 > i2 implies that

j(i1) ≥ j(i2) where j(i) is the index of the leftmost column containing the maximum value

in row i of M. M is said to be totally monotone if its sub matrices are monotone [6].

The above directional p-median problem can be represented as a directed acyclic

graph as shown in Figure 2.3, where each arc weight ω(i, k) is the sum of the distances

between the demand points di+1, di+2, . . . , dk and the demand point dk.

Hence

ω(i, k) =





0 if k = i + 1

(k − i− 1)dk −
∑k−1

j=i+1 dj otherwise
(2.1)

A complete and weighted DAG satisfies the concave Monge condition if

ω(i, j) + ω(i + 1, j + 1) ≤ ω(i, j + 1) + ω(i + 1, j)

for all 0 < i + 1 < j < n. It has been shown that the graph representing the directional p-

median problem obeys the concave Monge condition [4]. [1] showed that a two dimensional

Monge array is totally monotone on their notes on searching in multidimensional monotone

arrays.

2.3.2 Minimum Elements in Each Column of Totally Monotone Matrices

[6] exploits the property of totally monotone matrices to find the maximum entry

in each row of such matrices in Θ(n) time. This elegant matrix searching algorithm has

many geometric applications. We describe the algorithm to find the minimum entry in each

column of the matrix and show that this Θ(n) algorithm can be applied to our quantization

problem.

The algorithm to find the minimum in each column of a totally monotone n×m

matrix, n ≥ m, contains two parts:

The Reduce procedure takes an n×m totally monotone matrix as an input, m ≤ n, and

reduces the matrix to an m × m matrix by eliminating all the rows, also called the dead

rows, that are assured not to contain the minimum element in any of the columns.

The MinCompute procedure is a recursive procedure that calls the Reduce procedure to
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Algorithm Reduce (A)

find the minimum in the odd rows

From the known positions of the minima in the even rows of B,

Mincompute (C)

if n=1 then output the minimum and return

C = B[1,2,...,n;2,4,...,2*floor(n/2)]

B=Reduce (A)

Algorithm MinCompute (A)

end case

if k>1:k=k+1

C(k,k) > C(k+1,k): Delete row C

       C(k,k)<=C(k+1,k) & k=n: Delete row C

       C(k,k)<=C(k+1,k) & k<n: k=k+1

k

k+1

case

C = A; k=1

While C has more than m rows do
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find all the minimum elements in all the columns of the matrix.

When n ≥ m, the MinCompute procedure solves the minimum problem in a totally

monotone n×m matrix in time O(n) and this has been proved by [6]. The above algorithm

will be used to solve the quantization problem but will not store the totally monotone array

in memory. Instead, a function will be used to generate each element of the matrix in con-

stant time, the details of which will be presented in the next section. The deletion of rows

in the Reduce algorithm will be implemented by using a linked list that points to each row

of the matrix. When a row is deleted, the corresponding node is deleted from the linked

list to indicate the deletion. The linked list implementation also helps in easily traversing

to the next or the previous undeleted row in the array.

2.3.3 The New Dynamic Programming Formulation To Exploit Monge

Condition

In order to take advantage of the Monge condition, we need to change the dynamic

programming algorithm presented in Section 2.2. We introduce a new term $(i, j) into the

recursive equation, which is defined as the cost of mapping demand points di+1, di+2, . . . , dk

to point dk. In other words,

$(i, k) =





0 if k = i + 1

(k − i− 1)dk −
∑k−1

j=i+1 dj otherwise
(2.2)

As seen in the previous section, this term follows the Monge condition. By incorporating

this new term, our dynamic programming algorithm can be defined as

F (i, j) =





0 if i = j

$(j, i) if j = 1

mini−1
k=j−1{F (k, j − 1) + $(k + 1, i) if j < i, j 6= 1

(2.3)

Note that the recursive function F (i, j) defined here calculates the objective func-

tion unlike the cost function Ψ(Rn, p) that was defined for the dynamic programming algo-

rithm in the previous section.

Figure 2.4 shows the table that is filled using the Equation (2.3) using dynamic

programming one column at a time from left to right. The term F (N, P ) gives us the
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F(1,1) F(1,2)

F(2,1) F

F(3,1) F(3,2)

F(n,p)F(n,2)F(n,1)

F(3,p)

(2,p)

F(1,p)

F(2,2)

n

p

Table filled using dynamic programming

Figure 2.4: Table filled using dynamic programming
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solution to the quantization problem. Let F (k) represent column k of Figure 2.4. Our

objective is to fill each column of the Figure 2.4 in O(n). In order to achieve this, we

introduce a new function

Γ(i, j) = F (i, k − 1) + $(i + 1, j) (2.4)

We can fill column k of Figure 2.4 by finding the minimum elements in each column of the

n × n matrix represented by function Γ(i, j). The above equation is similar to the set of

equations that are represented by [7] to solve the concave least-weight subsequence prob-

lem. We see from the above equation that in order to calculate the elements of F (k), Γ(i, j)

depends on the values of F (k − 1) that has already been calculated.

We now show that the function Γ(i, j) obeys the concave Monge condition.

We know that

$(i + 1, j) + $(i + 2, j + 1) ≤ $(i + 1, j + 1) + $(i + 2, j) (2.5)

If we add F (i, k − 1) + F (i + 1, k − 1) to both sides of Equation (2.5) and apply Equation

(2.4), we get

Γ(i, j) + Γ(i + 1, j + 1) ≤ Γ(i, j + 1) + Γ(i + 1, j) (2.6)

Equation (2.6) shows that Γ(i, j) exhibits the concave Monge condition and hence

the matrix represented by Γ(i, j) is totally monotone. In solving the above dynamic pro-

gramming algorithm, to fill each column F (k) in the table shown in Figure 2.4, we form

an n × n matrix containing Γ(i, j) values that depend on the values of F (i, k − 1) using

Equation (2.4). Finding minimum elements in each column of this matrix gives us the n

values needed to fill F (k). This can be solved in O(n) using the Reduce and MinCompute

algorithms presented in the previous section. The time to fill all the p columns would then

take O(np).

The only issue now is that the array of Γ(i, j) is not actually represented in memory. Hence

the value of Γ(i, j), given the value of i and j has to be evaluated in constant time. Γ(i, j)

depends on the value of $(i + 1, j) and F (i, k − 1) each of which needs to be evaluated

in constant time. In order to evaluate $(i + 1, j) in constant time, we perform a simple

trick initially even before starting to solve the dynamic programming algorithm. Define, for
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j = 1, . . . , N

AV (j) =
j∑

t=1

dt

Defining AV (j) for each dj ∈D would take time O(n). Once this preprocessing is done, one

can find the value of $(i, j) in constant time using the formula

$(j, k) = −AV (k) + AV (j − 1) + (k − j + 1)dk

for j ≤ k.

The value of F (i, k−1) is already computed and hence can be referred to, in constant time.

Hence the value of Γ(i, k) can be calculated in constant time for any two values i and j

where i ≤ n and j ≤ n. Having determined how to evaluate Γ(i, k) in constant time given i

and j and using the algorithm to determine the smallest element in each column in totally

monotone matrices, we can solve the dynamic programming algorithm in O(np) which is

an improvement over the algorithm presented in Section 2.2.
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Chapter 3

Quantization Involving Additional

Constraints

In this chapter, we look at an extension to the directional p-median problem by

adding an additional constraint to the existing problem. We find the service points for the

given set of demand points such that all of the service points are a multiple of some basic

unit r. We explain the purpose of describing such a problem and extend the algorithm

given in the previous chapter to solve it.

3.1 The Additional Constraint

In certain applications, it is necessary to have the solution as a multiple of some

basic parameter. A good example is that of the memory system. A page is the smallest set

of data moved between main memory and the disk. When bringing the block of memory

from main memory to cache, the size of the cache block is a multiple of a page unit.

In today’s high speed networks, the data transmission rate available is usually a

multiple of a base rate r. For example the T-carrier circuits have transmission rates that

are a multiple of the fractional T1 system which is 64 Kbps. Optical transmission systems

such as the SONET lines have bandwidths that are a multiple of the basic SONET line rate
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(OC-1) of 51.84 Mb/s. The base rate usually depends on the characteristics of the data

being transmitted such as audio, video or other types of data. Hence when we quantize

the user requested demands, our objective is to make sure that they are a multiple of some

base unit so that the residual bandwidth after allocating the requested bandwidth is still

a multiple of that unit. This would prevent links from having residual bandwidths that

cannot be provided to any user’s request. Additionally, our scheme should provide the

flexibility on the values that the base rate can take which is consequently not hardwired

into the system. Hence we extend the new problem of quantization by adding an additional

constraint to the directional p-median problem.

Given a set of demand points D = {d1, d2, . . . , dN}, find a set of p service points

S = {s1, s2, . . . , sP } such that the total distance between each demand point and its nearest

service point is minimum and in addition, each service point should be a multiple of some

basic unit r. In other words, si = ki × r,∀si ∈ S.

1d

s
1

s
2

s
3 4

s

r

S:

0 1

d d d d d d2 3 d4 d5 6 7 d8 9 d10 11 12 d13 d14 d15d
D:

Figure 3.1: The directional p-median problem with service points being a multiple of a
basic unit r
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Considering the above problem, our new objective function Objective(S) to be minimized

will then be

Objective(S) =
p∑

j=1

∑

di∈Dj

(r × kj − di) (3.1)

where Dj is the set of demand points mapped to the service point sj and r is the basic unit.

Let the cost function Cost(S) be defined as the total bandwidth that is provided

for all the user demands in the system. Then Cost(S) for the above problem is

Cost(S) =
p∑

j=1

(r × kj × nj) (3.2)

where nj is the number of demand points mapped to the service point sj . In other words,

Cost(S) = Objective(S) +
n∑

i=1

(di) (3.3)

where di ∈ D. It is intuitive from the above equation that the smaller the basic unit r, the

smaller and better is the cost function Cost(S).

There is always a penalty that one has to pay to reconfigure the system for each

transmission. This reconfiguration time could be due to several factors such as memory

operations and table lookups. Let us call this extra penalty, the control/management cost.

Let us define a penalty term Φ(r) as the rate that is lost in reconfiguration given

that the basic unit of flow is r bits per second. In other words, it represents the rate of

flow that could be accepted into the system if there was no time spent for reconfiguration.

Let T be the transmission speed of the system. To consider the worst case penalty, let us

assume that the system contains only flows with the basic rate. Hence, the actual time it

takes to transmit r bits would be r/T seconds. Let C1 seconds be the configuration time

after each transmission. So a time of C1 + r/T is spent on each flow. If we consider a time

frame of one second, the number of transmissions of size r bits in one second would be

T

T × C1 + r

This is also the number of times reconfiguration takes place. Hence, the number of bits that

could have been transmitted during all the time that spent on reconfiguration is

Φ(r) =
T

T × C1 + r
× C1 × T
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As we can see from the above equation, the penalty term that should be minimized is

inversely proportional to the basic unit r.

Φ(r) =
c

α + r

for some constant c and α where

c = C1 × T 2

and

α = C1 × T

This penalty term should also be considered when we try to find the objective

function and the minimum cost function expressed in Equations (3.1) and (3.2) respectively.

Hence we define a new objective function Obj(S) as follows:

Obj(S) =
c

α + r
+ Objective(S) (3.4)

where c
α+r is the control/management cost for reconfiguration and Objective(S) defined in

Equation (3.1) is the excessive bandwidth used. We can infer from the above equation that

the value of the basic unit r can neither be very small nor very large. Making the basic unit

r very small would increase the penalty function thereby increasing the objective function.

Making the basic unit very large would increase the Objective(S). Hence our goal is to find

the optimum r for which the value of the objective function Obj(S) is minimum.

3.2 The Behavior Of The Objective Function

Figure 3.2 is a plot of a sample objective function for p = 10, n = 1000, c = 0.01

and the n demand points generated as a uniform distribution between 0 and 1. The value

of the basic unit r is varied from 0 to 1/p in increments of 10−5 (the details about the

range and the granularity of the basic unit are presented in the next section). Figure 3.3

is a plot of a sample objective function for p = 10, n = 1000, c = 0.005 and the n demand

points generated as a decreasing distribution (refer the next chapter for the behavior of

these distributions) between 0 and 1. We observe from these figures that there is an initial

period of exponential decrease in the objective function as the value of r increases. This is

where the control/management cost factor dominates the objective function due to the very
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small values of r. As the value of r increases considerably, both the factors of the objective

function defined in Equation (3.4) come into play.

Also evident from the graphs is that the objective function is non-convex containing

several trenches at irregular intervals. The non-convex nature makes the optimization of the

above objective function difficult as it is very easy to get trapped in a local minima. Since

there is no easy way out to find the appropriate r whose objective function is minimum

using the standard optimization techniques known, we develop an exhaustive search on all

the possible values of r to find the optimum r.

3.3 The Exhaustive Search For The Optimum r

To solve the above mentioned problem, we will modify the algorithm presented in

the previous chapter used for solving the directional p-median problem. The idea is that

for each value ri in the range of values that the basic unit r can take, apply the algorithm

to find the p service points for the given n demand points such that all the p service points

are a multiple of ri. Calculate the objective function Obji(S) for each value of ri and find

the optimum ri that has the minimum objective function.

Since the p service points to be selected are a multiple of r, they no longer need to

be one of the demand points. In the case of the directional p-median problem, the set S of

p service points selected were a subset of the demand point set D. In other words, S ⊆ D.

This is no longer true with the addition of the new constraint which means that any of the

p service points could be out of the set of the given demand point set D.

We define the granularity of r as the difference between ri and ri−1. We require

the granularity of r in order to find out the values ri of r for which the objective function

has to be calculated. The granularity of the function is important as it determines the

accuracy with which we find the minimum objective function among all values of r. As the

granularity increases, the accuracy also increases. Considering today’s high speed network

capacities of around 2.5 Gbps and the fact that each flow provided is a multiple of 64 Kbps,

we can estimate the granularity of the basic unit r as 64Kbps/2.5Gbps ≈ 0.00001 when

all the demand points are normalized to values between 0 and 1. For a given value of p,

we know that the maximum value r can take is 1/p which makes it the upper bound of r.

Hence we linearly find the objective function for all values ri ∈ r such that 0 6 ri 6 1/p
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with increments of 0.00001 (in the normalized scale).

Having known the range of values that r can take and the granularity of r, for

each value of ri ∈ r, we find the set of potential service points by taking multiples of ri

between 0 and 1/p. We find the objective function using the DPM1 algorithm presented in

the previous chapter on this set. We do this for all possible values of ri to find the optimum

objective function, i.e the objective function with the lowest value. This is then the desired

solution. Hence this algorithm resorts to an extensive and tedious linear search on all the

possible values of ri to find the an ropt that has the optimum objective function. The service

points obtained by using this value ropt would then be the best set of service points for the

given set of demand points.

3.4 The Optimization Heuristics

As we infer from the previous section, there is a lot to pay with respect to time

when we conduct an exhaustive search to find the ropt which gives the optimum objective

function. Due to the granularity of r, there could be up to 105 possible values in the worst

case (when p = 1), and for each of these possible values of r we need to run the DPM1

algorithm which has a time complexity of O(np), where n here would be all the multiples

of r between 0 and 1/p which could again have up to 105 possible values. Hence the time

complexity for the whole search would be const× p where const is a very large value. The

exhaustive search algorithm hence has a very large time complexity that is independent on

the value of n. Hence even if the value of n is very small, it costs a lot to conduct such a

search to find the best set of service points. An improvement in running time can be made

by trading off the accuracy with which the minimum objective function is found. To satisfy

this goal, we present a few optimization heuristics in this section.

3.4.1 Demand Driven Heuristic (DDH)

In the exhaustive search algorithm, we considered all the multiples of ri between

0 and 1/p as the set of potential service points. In this heuristic, we find the multiples of

ri that are closest to and greater than the n given demand points. These new n points
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would then be the potential set of service points thereby considerably decreasing the time

complexity of the algorithm.

In order to satisfy this, we define a set V = {v1, v2, . . . , vn} of points such that

vi = r × ddi/re for each di ∈ D. Calculating this set V given the demand set D has time

complexity O(n). We change the definition of $(i, k) in Equation (2.2) as the sum of the

distance between demand points di+1, di+2, . . . , dk and point vk (instead of dk). Hence

$(i, k) =





0 if k = i + 1

(k − i− 1)vk −
∑k−1

j=i+1 dj otherwise
(3.5)

In order to use the above equation in the DPM1 algorithm we need to prove that this new

function $(i, k) obeys the concave Monge condition. In other words, we have to prove that

$(i, k) + $(i + 1, k + 1) ≤ $(i + 1, k) + $(i, k + 1)

We prove this as follows:

L.H.S = $(i, k) + $(i + 1, k + 1)

= (k − i− 1)vk −
∑k−1

j=i+1 dj + (k − i− 1)vk+1 −
∑k

j=i+2 dj

R.H.S = $(i + 1, k) + $(i, k + 1)

= (k − i− 2)vk −
∑k−1

j=i+2 dj + (k − i)vk+1 −
∑k

j=i+1 dj

R.H.S − L.H.S = vk+1 − vk + dk − dk = vk+1 − vk ≥ 0

Hence $(i, k) + $(i + 1, k + 1) ≤ $(i + 1, k) + $(i, k + 1) thereby obeying the concave

Monge condition. We can now use the DPM1 algorithm presented in the previous chapter

to find the p service points and the corresponding objective functions for each value of ri.

We then continue this process on all the possible values that ri can take between 0 and 1/p

until we get an ropt that gives the optimum objective function.

For each value ri ∈ r, finding the objective function and the p service points has a

time complexity of O(np). Depending on the value of p, there could be around 105 values

of r in the worst case (when p = 1). Let the number of values of r be denoted by x. Then

the total time complexity would be O(nxp).
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3.4.2 Service Driven Heuristics

The DDH explained in the previous section has a time complexity that depends on

the number of values of r and both n and p. For large values of n, the DDH heuristic could

turn out to be a slow algorithm. In order to save further on time, we present a few other

optimization heuristics that have faster time complexity at the expense of approximate

results with a higher value of objective function.

The idea behind the heuristic approach here is is driven by the fact that the p

service points to be found might be close to the service points that are found using the

DPM1 algorithm in Chapter 2. Hence, we first find the p service points for the given

set of demand points without considering the r factor. Hence this problem reduces to a

simple directional p-median problem that can be solved in O(np). Once the p service points

S = {s1, s2, . . . , sP } are found using the algorithm presented in the previous chapter, for

each value of the basic unit r, we find two sets

S′ = {s′1, s′2, . . . , s′P }

such that s′i = dsi/re × r and
~S = {~s1, ~s2, . . . , ~sP }

such that ~si = bsi/rc × r. The 2p elements of the above two sets would collectively be-

come the potential candidates for being one of the p service points. We follow a dynamic

programming approach to find the best p service points. Let us define η(i, j) as the cost of

mapping all the demand points between i and j to j. We then define function F recursively

as follows:

F (1, 0) = η(d1, s
′
1)

F (1, 1) = η(d1, ~s1)

F (r, 0) = min{F (r − 1, 0) + η(s′r−1, s
′
r), F (r − 1, 1) + η( ~sr−1, s

′
r)}

F (r, 1) = min{F (r − 1, 0) + η(s′r−1, ~sr), F (r − 1, 1) + η( ~sr−1, ~sr)}

for all 1 < r ≤ p. Solving the above recursive equations using the dynamic programming

algorithm, we can calculate the objective function as F (p, 1) + c
α+r as well as the p best
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service points. We name the above described approach, the Bidirectional Service Driven

Heuristic (BSDH).

Another approach is to just consider only those points that are a multiple of r

and greater than the p service points found using the DPM1 algorithm. To achieve this, we

compute just one set

S′ = {s′1, s′2, . . . , s′P }

such that s′i = dsi/re × r. This set would then be the required service points. It is then a

straightforward task to compute the objective function. We name this the Unidirectional

Service Driven Heuristic (USDH).

Both of the above heuristic approaches are faster than the DDH scheme by a

factor of n which is a significant improvement at a cost of having a slightly higher objective

function.

3.4.3 The Power of Two Heuristic (PTH)

Here we derive another scheme where the service points do not depend on the

values of the demand points. Hence the service points only depend on the value of p, the

number of quantization levels required. Hence irrespective of the values of the demand

points or the number of demand points, we always select the same set of service points.

We select the service points to be negative powers of 2 from 0 to p− 1. Hence the set S of

service points would be

S = { 1
2p−1 , 1

2p−2 , 1
2p−3 , . . . , 1}

We see that obtaining these service points would take only O(p) and calculating the value

of the objective function then would take O(n). Although this is a very fast heuristic when

compared to the other heuristics presented prior to this, the value of the objective function

and therefore the excess amount of bandwidth spent for the system would be considerably

higher when compared to the other heuristics. We choose the service points to be powers

of two as this scheme could then be applied in other systems where the power of 2 factor

plays an important role.
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Chapter 4

Numerical Results

We now present numerical results comparing the performance of several algorithms

and heuristics discussed in the previous chapter for traffic quantization. The schemes we

shall consider are:

1. The DPM1 algorithm, explained in Chapter 2 that quantizes traffic using directional

p-median problem in one dimension presented in [4].

2. The DDH heuristic for quantizing traffic based on the multiples of base unit lying

close to the demand points

3. The USDH heuristic that quantizes traffic by considering only points that are a mul-

tiple of the base unit, close to and ahead of the p supply points found using DPM1.

4. The BSDH heuristic that quantizes traffic by considering only points that are a mul-

tiple of the base unit and close to the p supply points found using DPM1 in both

directions.

5. The PTH heuristic which has fixed service points and are negative powers of 2 between

0 and p− 1.

Six different distributions were used to generate the demand sets in the simula-

tions: uniform, increasing, decreasing, triangle, unimodal and bimodal. The mathematical

expressions for the probability density functions (pdf) and cumulative density functions



27

(cdf) of each of these distributions are given in Table 4.1. Figures 4.1 - 4.6 show the graph

of the pdf of these distributions.

Distribution pdf cdf Domain
Uniform 1 x 0 < x < 1

Increasing 2x x2 0 < x < 1
Decreasing −2x + 2 −x2 + 2x 0 < x < 1
Triangle 4x 2x2 0 < x < 0.5

−4x + 4 −2x2 + 4x− 1 0.5 ≤ x < 1
4/9 4x/9 0 < x < 0.25

Unimodal 6 6x− 25/18 0.25 ≤ x < 0.35
4/9 4x/9 + 5/9 0.35 ≤ x < 1
1/4 x/4 0 < x < 0.25
4 4x− 15/16 0.25 ≤ x < 0.35

Bimodal 1/4 x/4 + 3/8 0.35 ≤ x < 0.65
1 4x− 33/16 0.65 ≤ x < 0.75

1/4 x/4 + 3/4 0.75 ≤ x < 1

Table 4.1: Formulae for pdf and cdf input distribution

4.1 Relative Performance of the Algorithms

Figures 4.7 - 4.10 show graphs describing the nature of the objective function for

DDH, BSDH and USDH heuristics drawing the demand points from various distributions.

The nature of the graphs presented in the figures is non-convex with very irregular trenches

as described in the previous chapter. Initially, when the value of r is very small, the

objective function is very high because of Equation (3.4). This explains the need for taking

the cost/management costs into consideration when selecting the appropriate r for traffic

quantization. As the value of r increases, there is an exponential decrease in the objective

function for some time after which it gets irregular.

The graphs show that DDH has the lowest objective curve in most cases, followed

closely by BSDH. The USDH gives a higher objective function by a small percentage but is

compensated by a much faster running time. Hence we infer that there is a trade off between

the value of the objective function and the running time complexity of the algorithms.

Figure 4.11 shows the performance for all the algorithms. We observe that the

PTH heuristic performs the worst as it has a predetermined set of service points which does
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not depend on the demand points. The DPM1 algorithm has the lowest curve but there is

no control/management cost accounted for.
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Figure 4.7: Relative Performance of DDH, BSDH and USDH for a uniform distribution

Figures 4.12 and 4.13 show the nature of the objective function for the DDH

heuristic when the values of p and c are changed respectively. We observe from the graphs

that as p increases, the value of the objective function decreases. This is obvious because

as p increases, excess bandwidth spent due to quantization decreases. As the value of p

tends to n, i.e a continuous network, the objective function tends to zero. Also shown in

the graph is that as c increases, the objective function increases which is in accordance to

Equation (3.4).

Figures 4.15 - 4.20 are a plot of the optimum objective function with respect to

the simulation instance number. Each instance of the simulation has a new set of demand

points generated from the respective distribution. For each instance of the simulation, the

heuristics are run for all values of the basic unit r to determine the r where the objective

function hits the global minimum. The value of the objective function is termed the op-

timum objective function for that instance of the simulation. All graphs are a plot of 30
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Figure 4.10: Relative Performance of DDH, BSDH and USDH for a triangle distribution
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instances, each having demand points generated from a separate seed.

We infer from the graphs that DDH gives the best results most of the time, but at

the cost of a slower running complexity. The BSDH performs almost as good as the DDH

with some instances sometimes performing better.

4.2 Cost Comparisons after Normalization

The results in this section show the graphs after normalization of the cost function

with respect to the continuous system. Cost function is defined as the total bandwidth spent

for the system. Hence it can be calculated as the sum of the objective function and the sum

of all demand points. For the continuous system, the cost function is the same as the sum

of all demand point. In order to normalize the cost function of DDH, we do the following:

We calculate the optimum objective value for a given instance of n demand points. We

then remove the control/management cost factor from this term as this does not contribute

to the bandwidth utilization of the network. We add this to the sum of all demand points

to get the cost of the DDH costDDH for that instance of demand points. We then divide

this by the cost function of the continuous system costcontinuous for the particular instance

of demand points. In our simulation, we do this for 30 instances, each with demand points

generated from a different seed and find the mean normalized cost function normDDH . In

other words,

normDDH =

∑30
j=1

costDDHj

costcontinuousj

30

where

costcontinuous =
n∑

i=1

(di)

and costDDH is as mentioned in Equation (3.3).

Similar calculations are done to obtain the normalized cost function of DPM1. All

graphs are a plot of such normalized cost against the value of p. For each value of p, the

normalized cost function is the average of 30 instances to obtain statistically significant

results.
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Figure 4.18: Optimum Objective function plot for Triangle distribution
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We see from the above graphs that the normalized cost function of the variants

of DDH and the DPM1 are close to 1 which is a desired result. Also the comparison of

DPM1 to that of DDH is interesting as the difference in the normalized costs of these

two algorithms is negligible. Hence we infer that we do not loose much in bandwidth

when compared to DPM1 in spite of having the additional constraint to quantize traffic.

Additionally, although not quantified, we definitely gain a lot on control/management costs

when compared to DPM1 at the cost of a negligible utilization of excess bandwidth.
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Chapter 5

Blocking Probability - A

Simulation Study

The goal of this chapter is to demonstrate through event based simulations that

the blocking probability by applying our optimization heuristics is comparable to that of

the DPM1 algorithm presented in [4] and the continuous network. We define the blocking

probability as the ratio of number of flows blocked due to unavailability of the residual

bandwidth in the network to the total number of flows coming into the network.

5.1 The Simulation Setup and Implementation

We take a network of 16 nodes on which we run our simulation. The network

structure is as shown in Figure 5.1. We randomly generate the user demands from a

particular distribution between 0 and 1. We have decided to take 100,000 user demand

requests from any of the six distributions presented in Table 4.1. All the links in the

network have an initial bandwidth capacity of 2 units. We do this because we know that in

reality, there would not be any requests that are close to the initial capacity of links in the

network. There are other parameters that go into defining the values of the user requests

when compared to the capacities of the network which we ignore here for simplicity. Hence
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in our case, no user request can be more than half the network’s initial bandwidth capacity.

The simulation is event based where each event describes the characteristics of

each user demand. Each demand di is characterized based on the following tuple:

{sourcei, destinationi, pathi, bwi, timei, durationi, idi}

sourcei is the source node and destinationi is the destination node of the user

demand di. The source and destination nodes are calculated by randomly selecting numbers

between 1 and 16 such that the source and destination are not the same nodes for a given

user demand. bwi is the bandwidth specification of the corresponding demand request.

timei is the time at the which the request occurs and durationi is the duration it takes for

the data to reach the destination or in other words, it is the transmission delay. Both the

timei and the durationi is generated from an exponential distribution with parameters λ

and µ respectively. In our simulation, the value of µ is always set to 1 and the value of λ is

varied accordingly. idi is the identity of the demand di.

Finally pathi is the set of vertices describing the path taken from the source to

destination. This path is calculated as and when the request arrives depending on the cur-

rent residual bandwidth in the links of the network. We use the Constrained Shortest Path

First (CSPF) algorithm for determining the path taken. We have assumed the number

of hops as the parameter for determining the shortest path between the source and the

destination. Hence we implement the breadth first search (BFS) algorithm instead of the

Dijkstra’s shortest path algorithm for better efficiency with respect to time. To implement

the CSPF algorithm, we first remove all the links from the network whose residual band-

width is less than the bandwidth bwi requested by the user demand di. We then apply the

BFS algorithm on the resulting network to find the shortest path. This path is saved in the

set pathi.

If the event arises where there could be more than one shortest path from source

to destination, we define three different policies for selecting the path from the source to

destination. Among the n different shortest paths, we select the link with the minimum

residual bandwidth in each of the paths, say min1,min2, . . . ,minn. Each of the minj

defines the weakest link in the corresponding paths thus making it the appropriate attribute

to decide on, for selecting a path. Let us define minj as the strength of the path pathj . We

then define the best fit policy as choosing the path whose strength is maximum and worst

fit policy as choosing the path whose strength is minimum. The third policy is to choose
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the first path selected by the algorithm, appropriately naming it the first fit policy. Due

to the nature of the BFS algorithm and for the simplicity of the simulation, we choose the

first fit policy, consequently ignoring the strength of the paths.

There is also some amount of pre computation involved in the simulation. Since

the simulation is basically to compare the blocking probabilities of the DDH algorithm

to the continuous network and the algorithm presented in [4], we need to find the set of

service levels given the value of p, where p is the number of service levels. This set also

depends on the distribution used to generate the 100,000 user demand requests. In order

to generate the p service points of a particular distribution using both DDH algorithm and

the DPM1 algorithm presented in Chapter 2, we generate 100,000 demand points from

the corresponding distribution and run both the algorithms. We then store the resulting

p service points in two separate arrays corresponding to the two algorithms. The 100,000

demand points generated for this purpose would correspond to the empirical data that the

network provider should collect in order to run the algorithm and get the required service

points. In the continuous network, the service point will be the same as the requested

demand point.

The simulation process is initialized by creating an event list containing the events

corresponding to each demand, sorted with the time in which the events occurs. Each

event could either be an arrival event where the demand request has arrived or a departure

event in which case the user demand have been serviced. If the event Ei is an arrival

event, we first calculate the amount of bandwidth servei that has to be provided for the

requested bandwidth bwi depending on the algorithm that we use. For the continuous

network, servei = bwi. We then find out if there is a path from sourcei to destinationi

in the current state of the network using the CSPF algorithm discussed earlier. If there is

a path pathi, we allocate the resource by reducing the residual bandwidth in each link of

pathi by an amount of servei. We also create a corresponding departure event to be inserted

in the sorted event list, containing the time of departure calculated as timei + durationi,

the provided bandwidth servei and the path pathi so that the bandwidth provided for

this request is restored in that path. If on the other hand, there is no path possible in

the current network for the requested bandwidth, the event is considered to be blocked in

which case a global counter is incremented. If the event Ei is a departure event, we restore

the bandwidth on all the links of path pathi by servei. Finally, the blocking probability is

calculated as the number of events blocked by the total number of events arriving into the
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network which is 100000.

5.2 Simulation Results and Discussion

We now consider the blocking probabilities of the system of the 16 node network

for 100000 input requests. All the graphs in this section have been plotted using logarithmic

scale and are plots of the blocking probabilities with λ, the rate of arrival into the system.

The entire simulation is conducted for 30 instances, each with a different seed for generating

the 100000 demand requests from a particular distribution. The mean blocking probability

is calculated for the 30 instances and plotted. This is done to obtain statistically significant

results. Additionally, confidence intervals are also calculated and plotted for the 30 instances

with 95% confidence. As mentioned earlier, µ is always set to 1 for all simulations.
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Figure 5.2: Blocking Probability comparisons for DPM1, continuous and DDH

For the result shown in Figure 5.2, three types of bandwidth allocation schemes
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were chosen namely DPM1, continuous system and DDH. Hence the entire simulation was

performed for each of these schemes. We generated random instances for the 100000 requests

using the uniform distribution for all the three simulations. Pre computation of the service

points was done for the DDH with c = 0.05, p = 30 and DPM1 with p = 30. Blocking

probabilities approach close to 5% as λ reaches 10.

It can be inferred from Figure 5.2 that although the continuous system has the

lowest blocking probability, the blocking probabilities of both DDH and DPM1 are very

close to that of the continuous system. This is a positive result considering the other

advantages of DDH when compared to DPM1 and the continuous system with respect to

control/management cost reduction. It also implies that the excess bandwidth spent using

DDH results in a negligible difference in blocking request when compared to the continuous

system and DPM1. As seen in the graph, there is only a difference of 0.5% in the blocking

probability of DDH and continuous system for λ as large as 10.
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Figure 5.3 is a plot of blocking probabilities using the DDH scheme but varying

the value of p. Pre computation of the service points is done with different values of p

and the simulation is run for each of these pre computed results. These are also plotted

with the continuous system. We notice from the graph that as the value of p increases,

the blocking probability decreases for a given value of λ. This is because, as the number

of service points increases, the objective function of the DDH decreases thereby decreasing

the excess bandwidth that is to be spent on the system. Since we save up on the bandwidth

as p increases, the number of requests blocked decreases hence decreasing the blocking

probability overall.

For the result shown in Figure 5.4, we use the DDH scheme and vary the distrib-

ution from which the requests are generated. All the pre computation is done with p = 30,

c = 0.05 and n = 100000. We use the increasing, decreasing, uniform and the triangle

distributions for this graph.
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As we see, the decreasing distribution turns out to have the lowest blocking prob-

ability among all distributions. This is because majority of the requests are very small and

only a few of them are large thereby accommodating more requests into the network. The

reverse is true for the increasing distribution thus making it suffer with higher blocking

probabilities.

Based on the results presented here, we conclude that the amount of traffic calls

blocked using the DDH scheme when compared to the continuous system and DPM1 is very

minuscule and is well compensated with the advantages that we gain using this scheme as

discussed in previous chapters. Hence, the blocking of requests due to excess bandwidth

giveaway is not a problem to consider and is traded off very well with the pros of using such

a scheme for traffic quantization.
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Chapter 6

Summary and Future Work

6.1 Summary

We have considered the problem of quantizing traffic demands such that the net-

work control/management costs as well as the excess bandwidth spent due to quantization

is minimized. We established the need for an additional constraint in order to achieve our

goal. We presented several algorithms and heuristics, influenced by the location theory and

solved them using dynamic programming and the properties of totally monotone matrices.

We evaluated the performance issues of such algorithms and the effect of such quantization

on blocking probability of input traffic. Based on our results, we conclude that adopting our

approach to quantizing traffic suffers little on additional bandwidth consumption when com-

pared to other traffic quantization techniques studied in the past. The blocking probability

of the proposed algorithms also has small difference when compared to the continuous net-

work. Additionally we gain on the control/management cost that is not otherwise possible

using other quantization approaches and the continuous network.

6.2 Future Work

Although we have outlined several efficient algorithms for quantizing the input

traffic demands, we believe that there is ample scope for future research in developing
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algorithms that will implement these ideas. Our quantization approaches give an insight

to deriving heuristics that can solve other potential NP-hard problems related to traffic

parameters such as bandwidth, delay, etc. in polynomial time. It would be interesting to

find optimization techniques for problems of similar kind. It would also be interesting to

study quantization techniques for multiple QoS parameters for each traffic request such as

the combination of bandwidth and delay.
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