
ABSTRACT

AMUDALA BHASKER, AJAY BABU. Tiered-Service Fair Queueing (TSFQ): A Practi-

cal and Efficient Fair Queueing Algorithm. (Under the direction of Professor George N.

Rouskas.)

A router in today’s Internet has to satisfy two important properties in order to

efficiently provide the Quality of Service (QoS) requested by the users. It should be fair

among flows and also have low operational complexity. The packet scheduling techniques

that have been proposed earlier do not have both these properties. Schedulers like Weighted

Fair Queueing (WFQ) provide good fairness among flows but have high operational complex-

ity. Schedulers like Weighted Round Robin (WRR) are efficient but provide poor fairness

among flows. We propose a new packet scheduling technique, Tiered Service Fair Queueing

(TSFQ), which is both fair and efficient. We achieve our goal by applying the concept of

traffic quantization. A quantized network offers a small set of service levels (tiers), each

with its own weight. Each flow is then mapped to one of the service levels so as to guaran-

tee a QoS at least as good as that requested by the flow. We propose different versions of

TSFQ, each with its own level of fairness. We present the complexity analysis of the TSFQ

scheduler. Finally, we demonstrate through simulations on the TSFQ implementation on

ns− 2, that TSFQ provides good fairness among flows.
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Chapter 1

Introduction

1.1 Packet Scheduling

Technological advances have dramatically increased electronic processing speeds,

however so has the transmission capacity of the network links. With the advances in the

optical network technologies, the data rate of the network links has increased to 10 Gbps,

currently and soon to 40 Gbps. The exponential increase in the amount of bandwidth

available within the network has outpaced the improvements in switching and routing ca-

pabilities, and this is expected to continue in the future. So, there is a severe mismatch

between the bandwidth supported by the network links and the operational speed of the

electronic switching and/or routing functions at the network nodes. One such important

function of the routing equipment is packet scheduling or queueing.

Packet scheduling refers to the decision process used to select the order in which

the packets are transmitted onto the outgoing link. Packet schedulers can be classified into

two types:

Work conserving schedulers In these schedulers, the link is never idle when there are

packets waiting for service. Most of the existing packet schedulers belong to this type.

Non-work conserving schedulers In these schedulers, the link may be idle even if it has

packets to serve. One important reason for delaying the service of packets is to reduce

the delay jitter.
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Packet scheduling is an important means of controlling congestion and providing

specific Quality of Service (QoS) to the flows in the networks. Determining the order in

which the packets are serviced is a challenging task because of the QoS requirements of

the flows. Each flow in applications such as the World Wide Web (WWW) that involve

transfers of data, voice clips and video images have tight bounds on several performance

measures such as delay, loss rate, delay jitter, etc. There is also an exponential increase in

the number of such flows, making it imperative for the packet scheduler to be very efficient

in terms of operational time and also at the same time serve the flows according to their

specific QoS requirements.

The goal of this research is to design a practical and efficient packet scheduling

scheme. The three important properties of an ideal packet scheduler is as follows:

• Since the schedulers are used in high speed networks, they should have a low opera-

tional time complexity, preferably O(1).

• The schedulers should maintain delay bounds for guaranteed-service applications.

• The scheduler must provide fairness among the flows competing for the shared link. In

other words, the scheduler must provide fair sharing of bandwidth among the flows.

Short-term throughput is a good measure for determining the fairness among the

flows.

Few packet scheduling schemes like Weighted Fair Queueing (WFQ) provide good

fairness among flows and QoS guarantees, but have relatively high complexity O(log n),

where n is the number of flows in the system. Other packet scheduling techniques like

Weighted Round Robin (WRR) have an O(1) complexity, but in general do not have good

fairness and bounded delay properties.

1.2 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we describe traffic quantization

and its applications in packet-switched networks. We then, look at the approaches to solve

the problem of quantization. In Chapter 3, we describe Generalized Processor Sharing

(GPS), the ideal packet scheduling technique, and two of its emulations namely Weighted

Round Robin (WRR) and Weighted Fair Queueing (WFQ). In Chapter 4, we propose
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a new packet scheduling technique, Tiered Service Fair Queueing (TSFQ), with different

versions that apply traffic quantization to achieve better efficiency and fairness. In Chapter

5, we present the architecture and implementation details of the TSFQ component we

implemented on ns− 2 simulator and present some fairness-related performance results in

Chapter 6. Finally we summarize our work in Chapter 7 and provide directions for future

research.
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Chapter 2

Traffic Quantization: Applications

and Algorithms

In this chapter, we look at the need for applying quantization in packet-switched

networks. Also, we look at the p-median problem and the approach to solve the problem

of quantization by mapping it to an instance of the p-median problem. We look into the

directional p-median problem, a special case of the traditional p-median problem, and the

solutions to this problem [9]. We then look at an extension to the directional p-median

problem and its solution [3]. Finally, we look at the findings made by comparing the

quantized networks with the continuous networks [9].

2.1 Traffic Quantization and its Applications

Traffic quantization can be defined as the process of mapping each flow in the

network to one of a small set of service levels (tiers), in such a way that a Quality of Service

(QoS) at least as good as that requested by the flow is guaranteed. Traffic quantization

trades off a small amount of system resources for simplicity in the core network functions,

including packet scheduling, traffic policing, etc.

Due to the advances in optical transmission technologies, there is an exponential
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increase in the amount of bandwidth available within a network. Because of this, a router

in today’s high speed networks serves hundreds of thousands of flows, each with different

QoS requirements. But the ability of routing functions at the network nodes to support

per-flow functionality in continuous networks is limited. In a quantized network, per-flow

functionality could be supported in an efficient and scalable manner. A quantized network

offers a small set of service levels (tiers) and each flow in the network is mapped to one of

the tiers, in such a way that a QoS at least as good as requested by the flow is guaran-

teed. This simplifies a wide range of network functions. For example, consider the issue of

traffic policing. In a continuous-rate network, one flow may request a bandwidth of 99.92

Kbps while another 99.98 Kbps. In this case, the network provider faces a difficult task

of distinguishing these two rates and enforcing them reliably. A quantized network might

assign both the flows to the next higher level of bandwidth, say 100 Kbps. Now, there

is no need for the network provider to distinguish between these two flows. The network

operator only needs to supply policing mechanisms for a small set of rates, independent of

the number of flows. Traffic quantization may also simplify other network functions such

as packet scheduling, traffic engineering, state dissemination, network management, service

level agreements, billing, etc.

The disadvantage of a quantized network is that it may consume more resources

than a continuous-rate network to satisfy the same set of requests for service. In the case

of bandwidth quantization, the total amount of bandwidth required, to service the same

set of requests, may be more in a quantized network than in a continuous-rate network. In

order to minimize the additional amount of resources, it is important to select an optimal

set of service levels. The algorithms presented in the following sections help in determining

an optimal set of service levels, given a set of service requests.

2.2 The p-Median Problem

The p-median problem [8] belongs to the class of location problems, where the

objective is to select a subset of n points, referred to as the set of demand points, as the

location of setup facilities, called the supply points, that will serve the demand points. The

utility of the demand point is defined as a function of the distance between it and the closest

supply point that services it. The objective here is to minimize the overall utility of the
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Figure 2.1: Mapping a set of demand points D to a set of supply points S in traditional
p-median problem on the real line

system by choosing appropriate supply points.

The objective of the p-median problem is to map a set of n demand points D =

{d1, d2, . . . , dn} to a set of p supply points S = {s1, s2, . . . , sp} in such a way that the

total distance between each demand point and its closest supply point is minimum. In this

problem, p is always less than or equal to n and the set of p supply points chosen should

be a subset of the n demand points.

The p-median problem, as a location problem, is usually defined for points on the

plane, but can be generalized to points in a k-dimensional system, k ≥ 1. In this work,

we will focus on the p-median problem when k = 1, which we will refer to as p-median

problem on the real line. Figure 2.1 shows an instance of the p-median problem on the real

line where | D |= n = 15 and | S |= p = 4. Down arrows represent demand points, and

up arrows represent supply points. This instance is such that demand points d1 − d3 are

mapped to supply point s1, demand points d4− d7 are mapped to supply point s2, demand

points d8 − d12 are mapped to supply point s3, and demand points d13 − d15 are mapped

to supply point s4.

Formally, the p-median problem on the real line can be formulated as

Minimize
n∑

i=1

ω̄(di, S) (2.1)

subject to

d1 ≤ d2 ≤ . . . ≤ dN (2.2)

ω̄(di, S) = min{| d− di |: d ∈ S} (2.3)
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Figure 2.2: Mapping a set of of demand points D to a set of supply points S in directional
p-median problem on the real line

S ⊆ D (2.4)

|S| = p (2.5)

di ∈ D (2.6)

1 ≤ p ≤ n (2.7)

where ω̄(di, S) is the distance between di and its nearest supply point.

2.3 The Directional p-Median Problem

The directional p-median problem [9] is a special case of the traditional p-median

problem. The directional p-median problem on the real line has an additional restriction

that the nearest supply point for a given demand point has to be greater than or equal

to the demand point itself. Figure 2.2 presents an instance of the directional p-median

problem on the real line. The demand set D is identical to that in Figure 2.1, and the

number of supply points p = 4 as well. However, as we can see, the additional constraint of

the directional problem leads to a different solution. For instance, demand points d1 − d3

are mapped to the supply point s1, but unlike in Figure 2.1, we have that all the demand

points are less than or equal to s1 as required by the problem definition. Note also, that

for a solution to be feasible, the largest supply point (in this case, s4) must be greater than

or equal to the largest demand point (in this case, d15). Formally, the directional p-median

problem on the real line is: Given a set D = {d1, d2, . . . , dn} of n demand points that are
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sorted in non-decreasing order, find an optimal set S = {s1, s2, . . . , sp} of p supply points,

which minimizes the following objective function:

Obj(S) =
p∑

j=1

∑
di∈Dj

(sj − di) (2.8)

subject to

S ⊆ D (2.9)

|S| = p (2.10)

d1 ≤ d2 ≤ . . . ≤ dN (2.11)

s1 ≤ s2 ≤ . . . ≤ sP (2.12)

sj−1 < di ≤ sj (2.13)

Dj ⊆ D (2.14)

Here, Dj denotes the set of demand points that are mapped to the supply point sj . Since

the problem is directional, all elements in the set Dj are greater than sj−1 and lesser than

or equal to sj . The sets D1, D2, . . . , Dp are exclusive subsets of D.

An application of the directional p-median problem is the problem of traffic quan-

tization. The QoS requests of the flows and the service levels (tiers) to which they are

mapped in a quantized network are analogous to the demand points and supply points, re-

spectively, in the directional p-median problem. The directional constraint in the problem

assures that the flows receive QoS at least as good as that requested by them. The objective

function Obj(S) corresponds to the excess amount of network resources consumed and the

goal of the problem is to minimize this excess resource consumption.

2.3.1 Solutions to the Directional p-Median Problem

A simple approach to solve the directional p-median problem is to use the dy-

namic programming technique. Given a set D = {d1, d2, . . . , dn} of demand points that are

sorted in non-decreasing order, the optimal set S = {s1, s2, . . . , sp} can be determined using

the following dynamic programming algorithm, as described in [9]. Let the cost function

Ψ(Rn, p) denote the minimum cost for mapping all points in set Rn to p supply points where

Rn is the set of n smallest demand points.
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Obj(S) = Ψ(RN , p)−
n∑

i=1

di (2.15)

Ψ(R, P ) can be computed recursively using:

Ψ(Rn, 1) = ndn, n = 1, . . . , N (2.16)

Ψ(R1, p) = d1, p = 1, . . . , P (2.17)

Ψ(Rn, p + 1) = min
q=l,...,n−1

{Ψ(Rq, p) + (n− q)dn}, p = 1, . . . , P − 1; n = 2, . . . , N (2.18)

This algorithm has an overall time complexity of O(n2p).

In order to obtain a better complexity bound, [3] used the property of totally

monotone matrices and the Monge property to solve this problem. A matrix M having real

entries is said to be monotone if i1 > i2 implies that j(i1) ≥ j(i2) where j(i) is the index of

the leftmost column containing the maximum value in row i of M. M is said to be totally

monotone if its sub matrices are monotone [2]. The directional p-median problem can be

represented as a Directed Acyclic Graph (DAG), where each arc weight ω(i, k) is the sum

of the distances between the demand points di+1, di+2, . . . , dk and the demand point dk. A

complete and weighted DAG satisfies the concave Monge condition if

ω(i, j) + ω(i + 1, j + 1) ≤ ω(i, j + 1) + ω(i + 1, j) (2.19)

for all 0 < i + 1 < j < n. It has been shown that the DAG representing the directional p-

median problem obeys the concave Monge condition [9]. When n ≥ m, the Monge property

can be used to find the minimum entry in each row or column of a totally monotone

n×m matrix in time O(n) [2]. The dynamic programming algorithm in (2.16) - (2.18) was

modified in [3] to exploit the Monge condition. A new term $(i, j) was introduced into the

recursive equation, which is defined as the cost of mapping demand points di+1, di+2, . . . , dk

to point dk.

$(i, k) =




0 if k = i + 1

(k − i− 1)dk −
∑k−1

j=i+1 dj otherwise
(2.20)

Now, the dynamic programming algorithm (DPM1 algorithm) is defined as

F (i, j) =




0 if i = j

$(j, i) if j = 1

mini−1
k=j−1{F (k, j − 1) + $(k + 1, i) if j < i, j 6= 1

(2.21)
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Figure 2.3: The directional p-median problem with supply points being a multiple of a basic
unit r

Using the DPM1 algorithm to determine the smallest element in each coloumn in totally

monotone matrices, we can solve the dynamic programming algorithm in O(np). This is a

substantial improvement for problem instances in which the number of demand points (in

our case, the number of traffic flows) n is in the order of hundreds of thousands.

2.4 The Constrained Directional p-Median Problem

In certain applications, it is necessary to have the solution as a multiple of some

basic parameter. For example, data is moved between the main memory and the disk in

multiples of the page size. Also in today’s high speed networks, the data transfer rate

is usually a multiple of a base rate r. To this end, the directional p-median problem

was extended in [3] by adding an additional constraint that all of the supply points are a

multiple of some basic unit r. Hence, the new problem of quantization can be defined as

follows. Given a set of demand points D = {d1, d2, . . . , dn} find a set of p supply points

S = {s1, s2, . . . , sp} such that the total distance between each demand point and its nearest

supply point is minimum and in addition, each supply point should be a multiple of some

basic unit r. In other words,

si = ki × r,∀si ∈ S (2.22)

Figure 2.3 shows an instance of the constrained directional p-median problem, with

a demand set D and number of supply points p identical to that in Figures 2.1 and 2.2. In

this problem, we have an additional constraint that each supply point should be a multiple
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of a basic unit r. The mapping of the demand points to the supply points is identical to

that in Figures 2.1 and 2.2, but here, the supply points are multiples of the basic unit r.

Considering the Equation (2.22), the objective function Objective(S) to be minimized will

then be

Objective(S) =
p∑

j=1

∑
di∈Dj

(r × kj − di) (2.23)

where Dj is the set of demand points mapped to the supply point sj and r is the basic unit.

2.4.1 Solutions to the Constrained Directional p-Median Problem

Since the p supply points to be selected are multiples of r, they no longer need to

be one of the demand points. So, the algorithm described in the previous section for solving

the directional p-median problem was modified to take into account this fact [3]. For each

value of ri that the basic unit r can take, the p supply points for the given n demand points

is determined such that all the p supply points are a multiple of ri. The objective function

Obji(S) for each value is calculated and the optimum ri that has the minimum objective

function is chosen. The problem with this algorithm is that, for each possible value of r

we need to run the DPM1 algorithm which has time complexity of O(np), where n is the

number of multiples of r between 0 and 1/p. The total running time of this algorithm is

O(nxp), where x is the number of possible values of r. Here n and x are usually very large

values. Next, we describe several heuristics for this problem which were first introduced

in [3]. The various heuristics trade-off the accuracy with which the minimum objective

function is found, for an improvement in the running time.

In the Demand Driven Heuristic (DDH), multiples of ri that are closest to and

greater than the n given demand points are found. These new n points would then be

the potential set of supply points, thereby considerably decreasing the time complexity of

the algorithm. Even though the total time complexity is still O(nxp), the value of n is

comparitively small here.

In the Service Driven Heuristic (SDH), the DPM1 algorithm is first used to find

the p supply points for the given set of n demand points without considering the basic

factor. Then, for each possible value of the basic factor r, the multiples of r that are closest

to the p supply points are only considered to determine the actual set of p supply points.

In Unidirectional Service Driven Heuristic (USDH), only those points that are a multiple
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of r and greater than the p supply points are considered. In Bidirectional Service Driven

Heuristic (BSDH), this restriction is not applied. Both the heuristic approaches are faster

than DDH by a factor of n, which is a significant improvement for cases where the number

of demand points is large.

In the Power of Two Heuristic (PTH), the supply points do not depend on the

values of the demand points. The p supply points are always the negative powers of 2

from 20 to 2p−1. Obtaining these supply points would take only O(p) time and calculating

the value of of the objective function would take only O(n) time. Even though this a fast

heuristic compared to others, the amount of resources wasted would be considerably higher

when compared to other heuristics.

2.5 Findings

A simulation study conducted by Jackson and Rouskas [9] showed that a small set

of service levels is sufficient to approximate the resource usage of a continuous-rate network.

In this study, six different distributions were used for generating the demand sets: uniform,

triangle, increasing, decreasing, unimodal and bimodal. The results showed that, regardless

of the input distribution, the amount of excess resources consumed by quantization decreases

sharply as the number of service levels p increases until p ≈ 15, beyond which the resource

consumption decreases slowly. At this point, the resource consumption is no more than

5-8% resources beyond the amount requested. When the number of demands n increases,

the excess resource usage also increases, but the rate of increase is slow. Overall, the results

showed that demand sets of 10000 requests can be serviced by 20 or fewer service levels

with no more than 5-8% excess resources consumed. Alternatively, we can say that requests

up to approximately 92-95% capacity of the link bandwidth can be accepted in a quantized

network.

Baradwaj [3] conducted experiments to compare the performance of the DPM1

algorithm and the heuristics described in Section 2.4.1. The results showed that DDH

performed better than the other heuristics, but at the expense of higher running time.

BSDH performed almost as good as DDH and PTH performed the worst. But PTH has

lower running time than the other heuristics. Clearly, there is a trade-off between the

performance and running time complexities of the heuristics. Also, the comparison of
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DPM1 to that of DDH is interesting as the difference in the normalized costs of these two

algorithms is negligible. Hence, we can say that traffic quantization incurs only a small

amount of bandwidth loss.
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Chapter 3

Generalized Processor Sharing and

its Emulations

In this chapter, we look into the workings of Generalized Processor Sharing (GPS)

and the practical scheduling techniques that emulate GPS. There are many scheduling tech-

niques that attempt to emulate GPS: Weighted Round Robin (WRR) [5], Deficit Round

Robin (DRR) [12], Generalized Virtual Clock (VC) scheduling [13], Self Clocked Fair Queue-

ing (SCFQ) [6], Weighted Fair Queueing (WFQ) [11], Worst-case Fair Weighted Fair Queue-

ing (WF2Q) [4], among others. Out of these emulations, in this chapter we look into the

two most popular ones namely, the Weighted Fair Queueing and Weighted Round Robin

packet scheduling techniques in detail.

3.1 Generalized Processor Sharing

An appropriate packet scheduling discipline is important in providing Quality of

Service (QoS) to the users of a network. The scheduling discipline should be flexible enough

to allow different service to different users. At the same time, it should not compromise

fairness. That is, one user should not receive more than the allocated service at the expense

of another user. Generalized Processor Sharing (GPS) is an ideal service dicipline that
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provides absolute fairness among the users.

GPS is a natural generalization of uniform processor sharing. In uniform processor

sharing, all the users are treated equally and they receive the same service. GPS is a work

conserving service discipline, since the server is always busy, if there are packets waiting to

be served. Let r denote the rate of the server and the positive real numbers φ1, φ2, . . . , φn

denote the weights of the N different packet flows. Let Si(t, t + τ) be the service received

by flow i at the GPS server in the interval (t, t + τ). If a flow i is continously backlogged in

the interval (t, t + τ), then the GPS server satisfies the following condition

Si(t, t + τ)
Sj(t, t + τ)

≥ φi

φj
, j = 1, 2, . . . , N (3.1)

In other words, the service received by the flow i relative to other flows is always greater than

or equal to its relative weight. This implies that a flow which is continuously backlogged

for some time τ , will receive service at least as good as it requested, for that time τ . Also,

the flow i is guaranteed a rate of

ri =
φi∑
j φj

r (3.2)

The actual rate of service of the flow i (r′i) is always greater than or equal to ri.

To show this, let B(t) denote the set of backlogged flows at time t. Since the server is work

conserving, the rate of service of backlogged flows r′i could be higher than the guaranteed

rate ri in an interval (t1, t2) in which a set of flows are not backlogged.

r′i =
φi∑

j∈B(t) φj
r (3.3)

Since the number of backlogged flows is less than or equal to the total number of flows, i.e.,

B(t) ⊆ {1, 2, . . . , N}, we have that

∑
j∈B(t)

φj ≤
∑

j

φj (3.4)

Thus, from equations (2.2), (2.3) and (2.4), we have that

r′i ≥ ri (3.5)

Once any of the non-backlogged flows becomes active at a later time, it would

receive service at least as good as their guaranteed service. But none of these flows would
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receive preferential treatment because of the fact that they were idle during the interval

(t1, t2). GPS scheduler maintains a seperate FIFO queue for each flow sharing the link.

Unlike other queueing disciplines like the First Come First Served (FCFS) or the strict

priority schemes, GPS does not bound the queueing delay of a packet based on the total

queue length on its arrival. Rather it bounds the delay of the packet based on the queue

length of the packet’s flow.

GPS provides worst case network queueing delay guarantees and ensures absolute

fairness among the flows in the network. Hence, GPS service discipline is the best suited

scheme for providing QoS in the networks that serve real time traffic like voice and video.

But GPS is an idealized scheme that cannot transmit packets. A GPS server serves all the

backlogged flows simultaneously. It also assumes that the traffic is infinitely divisible. In

realistic networks, the traffic is made of packets that cannot be broken or divided. Also, a

server can provide service to only one flow at any time. An entire packet must be served be-

fore another packet can be served. Hence GPS is unimplementable in any realistic network.

There are different ways of emulating GPS in networks. Weighted Round Robin (WRR)

and Weighted Fair Queueing (WFQ) are two of the most popular ones.

3.2 Weighted Round Robin

Weighted Round Robin (WRR) scheduling discipline is one of the simplest emu-

lation of the GPS discipline. WRR is a best-effort scheduling discipline that serves flows

based on the weights associated with them. Round Robin scheduling discipline is a special

case of WRR where all the flows have equal weights. In Round Robin discipline, the server

serves one packet of each backlogged flow in every round. There are two styles of scheduling

in WRR - bursty and smooth.

In the bursty service style of WRR scheduling, the server serves a specific number

of packets or bytes proportional to the weight of the flow, in every round. (Since it serves

a burst of packets from one flow after another, it is called bursty service.) Consider an

example of 4 backlogged flows A, B, C and D with weights of 0.5, 0.2, 0.2, 0.1 respectively.

Then the WRR bursty service order, for every round, would be as shown in Figure 3.1.

The advantage of this WRR scheduling style is that it is easy to implement. But

this style does not provide strong fairness among the flows. The server visits a particular
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A A A A A B B CC D

Figure 3.1: WRR bursty service for flows A, B, C and D with weights of 0.5, 0.2, 0.2 and
0.1

A A A B C DB C A A

Figure 3.2: WRR smooth service for flows A, B, C and D with weights of 0.5, 0.2, 0.2 and
0.1

flow only once per round. If the flow does not have enough packets to be served in the

queue, the server serves fewer number of packets than the allowed number of packets for

that flow in that round, even if packets arrive at the queue after the visit by the server. For

example, if there are only 2 packets of flow A in the queue, the server serves these 2 packets

and moves to the next flow. If a packet of flow A arrives later in that round, the packet has

to remain in the queue until the server completes the round and will be transmitted when

the server visits the flow in the next round. Hence it also does not provide proper delay

guarantees to the packets in the network.

In the smooth service style of WRR scheduling, packets are serviced based on

service intervals. The service interval of a flow is inversely proportional to its weight. A

flow is serviced only once in a service interval. After the flow is serviced in the interval, it

becomes ineligible for service during the remaining time in the interval. Consider the same

example of 4 backlogged flows A, B, C and D with weights of 0.5, 0.2, 0.2, 0.1 respectively.

The service order, for every round, would be as shown in Figure 3.2.

In this style, the jitter is low compared to the bursty service style. But this style

has high running time complexity because each time a flow becomes active or inactive,

the schedule needs to be recomputed. Even though this style provides better fairness than

bursty service style, it still has short-term fairness issues.

WRR does not work well with traffic that involves variable-sized packets. For

variable-sized packet traffic, WRR requires the estimation of mean packet size of every flow

in order to calculate the number of the packets that needs to be served in a round. In IP

networks, estimating the mean packet size of the flows is difficult and hence WRR may not

be able to correctly emulate GPS.
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3.3 Weighted Fair Queueing
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Figure 3.3: An example of GPS and PGPS service order of packets from two flows

Weighted Fair Queueing (WFQ) is the most popular emulation of the GPS. WFQ,

also referred to as PGPS (Packet Generalized Processor Sharing), is a packet-by-packet

transmission scheme that is a very close approximation of the GPS. Unlike WRR, WFQ

works well even when the packets are of variable size.

The best emulation of GPS would be a scheduling discipline which serves packets

in the same order as they would be serviced by the GPS. The packets in this scheme should

be serviced in the increasing order of their finish times in the corresponding GPS system.

But the problem is that the packet that needs to be serviced next may not have arrived at

the system. Since the server needs to be work-conserving, it cannot remain idle if there are

packets waiting to be serviced in the system. Consider an example with two flows, as shown

in Figure 3.3, where φ2 = 3×φ1, and it takes three time units to service each packet. Let us

assume that a session 1 packet P1 arrives at time 0 and a session 2 packet P2 arrives at time

1. GPS will serve session 1 packet until time 1. When the session 2 packet arrives, GPS will

serve both packets simultaneously. Since session 2 has greater weight, P2 will be served by

time unit 5 and P1 will be completely served by time unit 6. The scheme which emulates
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GPS cannot serve P2 before P1, because P2 does not arrive until time 1. Therefore, the

best possible way to emulate GPS is to serve the first packet that would complete service

in the GPS, if no additional packets were to arrive after time t. As a result, PGPS serves

P1 from time 0 to 3 and P2 from time 3 to 6. P2 departs the system at time 6, one time

unit later than it would depart under GPS. The only packets that are delayed under PGPS

are those that arrive late to be transmitted in their GPS order.

WFQ is implemented using virtual time. Virtual time V (t) is used to keep track

of the progress of the simulated GPS system. Consider a system with n flows which are

associated with n positive real numbers φ1, φ2, . . . , φn, that denote their weights. Let r

denote the rate of the server. Then, the following expression captures the evolution of

virtual time:

V (tj−1 + τ) = V (tj−1) +
τ∑

i∈Bj
φi

(3.6)

The rate of change of V is

∂V (t + τ)
∂τ

=
1∑

i∈B(t) φi
(3.7)

where B(t) denotes the set of backlogged flows at time t.

Suppose that the kth packet of flow i arrives at time ak
i , and has length Lk

i . Let

Sk
i and F k

i denote the virtual times at which this packet begins and completes service,

respectively. Letting F 0
i = 0 for all flows i, we have:

Sk
i = max{F k−1

i , V (ak
i )} (3.8)

F k
i = Sk

i +
Lk

i

φi
(3.9)

The WFQ scheduler serves packets in the increasing order of their virtual finish times F k
i .

The main advantages of WFQ are that it is a very close approximation to GPS

and it provides excellent worst case network delay guarantees. Let Fp and F ′
p denote the

finish times of any packet p in GPS and PGPS respectively. Then,

F ′
p − Fp ≤ Lmax

r
(3.10)

where Lmax is the maximum packet length and r is the rate of the server. WFQ has excellent

fairness and delay bound properties. But, the problem with the implementation of WFQ is
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that it has a running time complexity of O(logN), where N is the total number of flows in

the system. The head-of-line packets of all active flows must be in sorted order at any given

time t and this operation has a time complexity of O(logN). Worst-case Fair Weighted Fair

Queueing (WF2Q), a variant of WFQ that provides a better congestion control scheme, also

has a running time of O(logN).
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Chapter 4

Tiered Service Fair Queueing

(TSFQ)

In this chapter, we present how quantization may be applied to packet scheduling

in order to overcome the time complexity problem faced by the Weighted Fair Queueing.

First, we describe a basic scheduler which is suited only for traffic with fixed-size packets. We

also discuss the challenges associated with this new scheduler and the solutions to overcome

these challenges. Finally, we present an extension to the design of this basic scheduler that

would enable it to work well for traffic with variable size packets.

4.1 TSFQ for Fixed-Size Packet Traffic

For the sake of simplicity, let us assume for the moment that all packets in the

network have a fixed size L (i.e., Lk
i = L ∀i, k); we will remove this assumption in Section

4.2. Two components are involved in Tiered Service Fair Queueing (TSFQ): Quantization

and Scheduling. The quantization part takes place during a setup or offline phase in which

the optimal set of service levels are defined and the flows are mapped to appropriate service

levels. The scheduling part is an online phase in which the packets are queued and serviced

by the scheduler, based on the service levels set during quantization.
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Figure 4.1: Quantization of flows: n flows mapped to p service levels

4.1.1 Quantization

A Tiered Service Fair Queueing (TSFQ) scheduler maps all the flows to service

levels (tiers) based on their weights. Consider a quantized network with n flows that are

mapped to a small set of p different service levels, as shown in Figure 4.1. Here, p is a

constant and p << n. Let ψ1, ψ2, . . . , ψn, denote the weights associated with the flows.

Each service level l has its own weight φl, l = 1, 2, . . . , p, and all the flows that are mapped

to this service level have the same weight. Each flow is mapped to its closest tier with

greater weight. For any flow i that is mapped to a service level l, we have that

φl−1 < ψi ≤ φl, i = 1, 2, . . . , n, l = 1, 2, . . . , p

4.1.2 TSFQ Scheduler V.1: One FIFO per Service Level

The Tiered Service Fair Queueing Scheduler maintains a number of First-In-First-

Out (FIFO) queues for serving packets in an efficient manner, as shown in Figure 4.2.

Similar to GPS and PGPS, the scheduler maintains a FIFO queue for each flow defined in

the packet traffic. We will refer to these FIFOs as flow queues. At any time t, these flow
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Figure 4.2: Structure of the TSFQ Scheduler V.1

queues contain the packets, that belong to their respective flows, waiting to be serviced by

the scheduler. A packet arriving at a flow queue is inserted at the tail of the queue and

therefore the packets within a queue are sorted in the order of their arrival times. The

scheduler also maintains one FIFO queue for each service level l, l = 1, 2, . . . , p. The FIFO

queue at service level l contains the head-of-line packets of all the backlogged flows that are

mapped to this service level.

When a new packet arrives at the head-of-line of the flow queue, it is just added

to the tail of the FIFO queue. Consider a packet P arriving at time t that belongs to flow

i at service level l. The packet could arrive at the head-of-line of flow i’s queue in two

situations. The first one is when the packet arrives at an empty flow queue and the second

one is when the head-of-line packet of flow i’s queue departs from the system and packet P

is the next packet in the flow queue. In the first situation, the packet should be served after

the head-of-line packet of the other flows at service level l that were backlogged at time t,

but before all other packets of the same flows. This is because the head-of-line packets of

other flow queues have arrived before the packet P and all the flows, mapped to the same

service level l, have same weights. Therefore, this packet is inserted at the tail of the FIFO

queue for service level l so that if the FIFO queue were in sorted order of the virtual finish
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Figure 4.3: Fairness Issue Example: Comparison of Servicing Order of GPS, PGPS and
TSFQ V.1

time, it will remain in sorted order after the packet insertion in most cases. We will state

an exceptional case later.

In the second situation, the packet P moves to the head-of-line of the flow queue

because the packet in front of it has departed the system. Again, the packet should be served

after the head-of-line packets of all backlogged tier-l flows, but before any other packets of

these flows. So, the packet is inserted at the tail of the FIFO queue to ensure that the FIFO

queue remains sorted in increasing of the virtual finish time even after the packet insertion.

Since the packets within a FIFO queue are implicitly sorted in the increasing order of the

virtual finish time, the packets at each of the FIFO queues are served in FIFO order and

there is no packet sorting involved. When a packet completes service, the scheduler serves

the packet with the lowest virtual finish time among the head-of-line packets of the p FIFO
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queues. This operation involves a comparison of the virtual finish times of p packets, and,

given that for a particular system p is a small constant, it takes time O(1).

There is a fairness issue associated with the one-FIFO per tier scheduler. Figure

4.3 depicts this fairness issue by showing an example of servicing order of packets in GPS,

PGPS and TSFQ. In this example, the quantized network has three active flows f1, f2 and

f3 and one inactive flow f4 mapped to the same service level l. Also, there are more than

one packet in the flow queues of f1, f2 and f3 and the time required to service a packet is

one time unit. After two packets, one each from flows f1 and f2 are served, the FIFO queue

would have the new head-of-line packets of these flows at its tail. If the flow f4, mapped to

the same service level l, becomes activated when the scheduler is serving a packet from flow

f3, this new packet from f4 would be inserted at the tail of the FIFO queue. This packet

from flow f4 would be served after the packets from flows f1 and f2 are served. This is

unfair because the virtual finish times of the packets from flows f1 and f2 are greater than

the virtual finish time of the packet from f4 in the emulated GPS system. The packets from

flows f1 and f2 start receiving service before its virtual start time. In this example, the

service time of the packet from f4 is delayed by the sum of service times of the two packets

from f1 and f2. In the worst case, the service time of a packet in a TSFQ scheduler can be

delayed from its virtual finish time by as much as the sum of n− 2 packets’ service times,

where n is the total number of flows associated with the scheduler.

Let us analyze the worst-case delay performance of this first version of TSFQ. A

class of generalized Guaranteed Rate (GR) scheduling algorithms that includes work con-

serving algorithms like generalized Virtual Clock, Packet-by-Packet Generalized Processor

Sharing (PGPS) and Self Clocked Fair Queueing (SCFQ) algorithms, was defined in [7].

The class of guaranteed rate scheduling algorithms was defined to include algorithms that

guarantee that a packet would be transmitted by its guaranteed rate clock (or deadline)

value plus some constant. To define the guaranteed rate clock (GRC) value, let pj
f and ljf

denote the jth packet of flow f and its length, respectively, and let rj,i
f be the rate allocated

to packet pj
f at server i. Also, let Ai(pj

f ) denote the arrival time of packet pj
f at server i.

Then, the guaranteed rate clock value of pj
f at server i, denoted by GRCi(pj

f , rj,i
f ), is given

as:

GRCi(pj
f , rj,i

f ) = max(Ai(pj
f ), GRCi(pj−1

f , rj−1,i
f )) +

ljf

rj,i
f

(4.1)
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where GRCi(p0
f , r0,i

f ) = 0. Let Li
SA(pj

f ) denote the departure time of the packet pj
f at server

i using the scheduling algorithm SA. Then, we can formally state that if

Li
SA(pj

f ) ≤ GRCi(pj
f , rj,i

f ) + βi, (4.2)

then the scheduling algorithm SA ∈ GR class. Here, βi is a constant denoting the worst

case delay. GPS is an ideal and unimplementable system with constant factor βi = 0. As

we have shown in Section 3.3, WFQ, in the worst case, will delay a packet’s departure from

its GRC value by the service time of the maximum sized packet at server i. WFQ also

belongs to GR class, with βi = limax

Ci , where Ci is the capacity of the server. Previously

in this section, we showed that this version of TSFQ, in the worst case, will delay the

departure of a packet from its GRC value by as much as the sum of n− 2 packets’ service

time, where n is the total number of flows associated with the server. Regardless of the fact

that the constant βi value of TSFQ is higher compared to WFQ, this first version of TSFQ

also provides delay guarantee for all the packets flowing through the scheduler and hence it

belongs to the Guaranteed Rate (GR) class. Formally,

Li
TSFQ(pj

f ) ≤ GRCi(pj
f , rj,i

f ) +
n−2∑
k=1

lmax
k

Ci
(4.3)

where lmax
k is the maximum length for packets in flow k.

4.1.3 TSFQ Scheduler V.2: TWO FIFOs per Service Level

In order to overcome the fairness problem of the TSFQ scheduler V.1, we define

a two-FIFOs per service level TSFQ scheduler. Figure 4.4 shows the structure of this new

scheduler. The scheduler maintains two FIFOs for each service level and only one FIFO

remains active at any given time. In this two-FIFO scheduler, the head-of-line packets of

a newly activated flow are always sent to the active FIFO and the head-of-line packets of

previously backlogged flows are always sent to the inactive queue. The scheduler always

serves packets from the active FIFO queue. When there are no more packets to be served

in the active FIFO queue, the scheduler switches to the inactive queue and serves packet

from it, making it active. The other FIFO becomes inactive at this moment. By sending

the head-of-line packets of previously backlogged flows to the inactive queue, we ensure that
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the packets do not start receiving service before their virtual start time, thereby overcoming

the fairness problem of the TSFQ V.1 scheduler.

Even though the two-FIFO scheduler solves the fairness problem faced by the

one-FIFO scheduler, the addition of another FIFO introduces a new fairness problem. To

understand this, consider a system of 3 flows, f1, f2 and f3, assigned to a tier l, as shown in

the Figure 4.5. Let us assume that it takes one unit time to service a packet. At time 0, let

us assume that the active FIFO queue has one packet from flow f1 and this packet is being

serviced by the scheduler. Also let us assume that the inactive FIFO queue is empty. If at

time 1/2 a packet from flow f2 arrives at the scheduler, it would be added to the tail of the

active FIFO. When the packet from flow f1 finishes its service at time 1, the next packet in

its flow queue will be added to the inactive FIFO. If a new packet from flow f3 arrives just

before the departure of the packet from f2, it will be added to the tail of the active FIFO.

Then, this new packet will be served immediately after the packet from f2 and before the

packet from f1, which is in the inactive FIFO queue. But, we can see from the figure that

GPS services the packet from f1 before the packet from f3.

The algorithm for the operation of two-FIFO scheduler includes two procedures.

The Arrival procedure defines the action that needs to be taken on arrival of a packet.
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Figure 4.5: Fairness Issue Example: Comparison of Servicing Order of GPS, PGPS and
TSFQ V.2

The Departure procedure defines the steps involved in the departure of a packet.

4.1.4 TSFQ Scheduler V.3

In this section, we define a new version of TSFQ scheduler which overcomes the

problems of other TSFQ versions. TSFQ V.3 solves the fairness problems by ensuring

that insertion of packets into the FIFO queue only occurs at the virtual start time of the

packet’s service in the emulated GPS system. This version of TSFQ scheduler operates by

maintaining a GPS queue. For each active flow in the packet scheduler, the GPS queue

maintains its flowid and the finish time of its head-of-line packet in the emulated GPS

system. This queue contains only the information about the packet and not the actual

packets. A seperate GPS queue is maintained for each service level. Like TSFQ V.1, this

version of TSFQ scheduler also maintains only one FIFO and any newly actived flow’s

packet is directly inserted into the FIFO queue, but unlike TSFQ V.1 the next packet in
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Algorithm 1 Arrival(pkt)
fid ⇐ flow id of arriving pkt

tierid ⇐ tier id of arriving pkt

calculate virtual finish time of pkt

if flow queue[fid] is empty then

if fid is marked inactive then

insert pkt into the tail of active tier queue[tierid]

else

insert pkt into the tail of inactive tier queue[tierid]

end if

else

insert pkt into the tail of flow queue[fid]

end if
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Algorithm 2 Departure
pkt ⇐ packet with minimum virtual finish time in the k active tier queues

fid ⇐ flowid of pkt

tierid ⇐ tierid of pkt

if flow queue[fid] is not empty then

new pkt ⇐ head-of-line packet of flow queue[fid]

insert new pkt into the tail of inactive tier queue[tierid]

else

mark fid as active

end if

if tier queue[tierid] is empty then

mark all flows belonging to tierid as inactive

swap active and inactive tier queue[tierid]

end if

remove and return pkt
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the flow queue of the departed packet is not added immediately to the tail of FIFO during

the departure event. It is rather added only when the packet departs in the emulated GPS

system. An event is scheduled at the virtual finish time in the head-of-line element of the

GPS queue. When this event is dispatched, the head-of-line value of the GPS queue is

removed and the virtual finish time of next packet in the flow queue, if any, is added to the

tail of GPS queue and the next event scheduled. Also at this point, we add the next packet

in the flow queue, if any, to the tail of the FIFO queue. From equation 3.8, we can say that

the packets are inserted into the FIFO queue only at their virtual start time.

Lemma 1 Out of all currently available packets, TSFQ V.3 scheduler always serves the

one with the least virtual finish time.

Proof: In TSFQ V.3 scheduler, packets are inserted at the tail of the FIFO queue at their

virtual start time. So, the packets are arranged with in the FIFO queue in the order of

their virtual start time and are also served in the order of virtual start time with in a single

service level. Since the packets within a single service level FIFO have same weights and

same packet size, we can conclude from equation 3.9 that the packets are also served in

the order of their virtual finish time within the service level. Since the scheduler picks the

packet with the least virtual finish time among the head-of-line packets of all the service

level FIFOs, for service, we can conclude that TSFQ V.3 scheduler serves the packet with

the least virtual finish time among all the currently available packets. 2

4.2 TSFQ for Variable-Size Packet Traffic

In a network with variable-sized packets, p FIFO queues, one for each service level,

are not sufficient enough for constant time operation. However, we can exploit the fact that

in the Internet, certain packet sizes dominate [10], so as to implement TSFQ efficiently. As

shown in Figure 4.6, the scheduler may maintain k seperate FIFOs for each service level,
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Figure 4.6: Structure of the TSFQ Scheduler for Variable-Size Packet Traffic

for a total of pk FIFO queues, where k is a small constant based on the number of common

packet sizes. Some of the k FIFOs within a level are used for packets with common packet

sizes like 40, 576, 1500 bytes, etc. The remaining FIFOs are used for the packets with sizes

between these common values. For example, one queue for packets of size less than 40,

another for size 41-575 bytes, another for size 577-1499 bytes and another for packets of

size greater than 1500 bytes. In this case, k = 7. For a two-FIFO scheduler, we require

two FIFOs for each set of packet sizes within each service level. So, there will be 2k FIFO

queues for each service level, for a total of 2pk FIFO queues.

The queues dedicated to common packet sizes do not require any sorting. They

operate identically to the FIFO queues in a network with fixed-size packets. However, the

queues dedicated to packets with size between the common values must be sorted in the

non-decreasing order of virtual finish time of the packets, at the time of packet insertion.

Since more than 90% of the internet traffic consists of packets with common sizes [10], no

sorting operations are necessary for the large majority of packets. The sorting operations

take place infrequently (less than 10% of the time) and involves only relatively short queues,

since less than 10% of the packets are spread over several queues at l different service levels.

The time complexity of the sorting operations depend only on the network load and the
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ratio of packets with a non-common size, and is independent of the number n of flows.

Finally, the scheduler serves the packet with least virtual finish time among the head-of-line

packets of pk queues, where pk is constant for a given system.
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Chapter 5

ns Simulations

In this chapter, we turn our attention to the implementation details of the dif-

ferent scheduler versions proposed in the previous chapter. The schedulers were either

implemented or modified in the Network Simulator ns− 2. We start with a brief introduc-

tion to the simulator ns− 2 and then we deal with the implementation of the schedulers in

ns− 2.

5.1 ns− 2 Simulator

ns is a discrete event simulator, developed at the Lawrence Berkeley Labaratory

(LBL) of the University of California, Berkeley (UCB) and extended and distributed by the

VINT project (a collaboration between University of Southern California (USC)/Information

Sciences Institute (ISI), LBL/UCB and Xerox PARC). ns is targeted mainly at networking

research and education. ns is widely used by the networking community and is widely

regarded as a critical component of research infrastructure. ns provides substantial support

for simulation of TCP, routing, and multicast protocols over wired and wireless (local and

satellite) networks.

ns is an object oriented simulator, written in C++, with an OTcl (an object ori-

ented version of Tcl) interpreter as a front-end. ns uses the split programming paradigm

because the simulator is designed to do two different kind of things. On the one hand,
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Figure 5.1: Composite Construction of a Unidirectional Link in ns

detailed simulations of protocols requires a systems programming language which can ef-

ficiently manipulate bytes, packet headers, and implement algorithms that run over large

data sets. For these tasks run-time speed is important and turn-around time (run simu-

lation, find bug, fix bug, recompile, re-run) is less important. On the other hand, a large

part of network research involves slightly varying parameters or configurations, or quickly

exploring a number of scenarios. In these cases, iteration time (changing the model and re-

running the simulation) is more important. Since configuration runs once (at the beginning

of the simulation), run-time of this part of the task is less important. The combination of

C++ and OTcl meets both of these needs. C++ is fast to run but slower to change, making

it ideal for detailed protocol implementation. OTcl runs much slower but can be changed

very quickly (and interactively), making it ideal for simulation configuration. TclCL (Tcl

with classes) provides a layer of C++ glue over OTcl, making objects and variables appear

in both languages.

5.1.1 Packet Scheduling in ns− 2

In ns, a simple link is built from a sequence of connectors. A connector will receive

a packet, perform some function, and deliver the packet to its neighbour, or drop the packet.

ns provides the instance procedure simplex− link to create a unidirectional link from one

node to another. The syntax for creating a simplex link is:

$nssimplex− link{from− node}{to− node}{bandwidth}{delay}{queue− type}

This command creates a simplex link from node < from− node > to node < to− node >

with specified < bandwidth >. < delay > specifies the propagation delay of the link and
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a queue of type < queue − type > is installed for the link. As shown in Figure 5.1, five

instance-variables/connectors define a simple unidirectional link:

head Entry point to the link, it points to the first object in the link;

queue Reference to the main queue element of the link;

link Reference to the element that actually models the link, in terms of the delay and

bandwidth characteristics of the link;

ttl Reference to the element that manipulates the ttl (time to live) in every packet;

drophead Reference to an object that is the head of a queue of elements that process link

drops.

Out of these five instance variables, the queue component is the object of interest to us.

ns currently supports drop-tail (FIFO) queueing, RED buffer management, Class

Based Queueing (CBQ), and variants of Fair Queueing including, Fair Queueing (FQ),

Stochastic Fair Queueing (SFQ), and Deficit Round-Robin (DRR). Other Scheduling dis-

ciplines like Weighted Fair Queueing (WFQ), RED In/Out(RIO) and Core-Stateless Fair

Queueing (CSFQ) are available as seperate modules in the Internet. The Queue class is the

base class of all the queues in ns. This class is used by particular types of (derived) queue

classes. The class includes two important member functions: enque and deque. Both these

functions are pure virtual, indicating that the particular queues derived from Queue must

implement these two functions. Other member functions are usually not overridden in the

derived class.

When a Queue object receives a packet, it calls the subclass (queueing discipline

specific) version of the enque function with the packet. The enque function determines

how the packets are stored in the queue. Transmission delays are simulated by blocking

the queue until it is re-enabled by its downstream neighbor. When a queue is blocked, it is

able to enque packets but not send them. If the queue is not blocked, it is allowed to send

packets and calls the specific deque function which determines which packet to send, blocks

the queue (because a packet is now in transit), and sends the packet to the downstream

neighbor. Any future packets received from upstream neighbors will arrive to a blocked

queue. When the downstream neighbor wishes to unblock the queue after the transmission

delay, it invokes the resume function of the queue object, which will in turn invoke deque
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to send the next scheduled packet downstream (and leave the queue blocked). If there is

no packet ready to be sent in the queue, the queue is unblocked.

5.2 TSFQ Implementation in ns− 2

To test the performance of the TSFQ schedulers, both the versions were imple-

mented in the network simulator ns−2. Since the objective of designing the TSFQ scheduler

was to create a scheduler with fairness as good as that of WFQ and running time complex-

ity as good as that of WRR, we chose WRR and WFQ for comparing the performance of

TSFQ scheduler. ns− 2 package includes a Smooth service sytled Weighted Round Robin

(SRR) implementation. WFQ implementation for ns − 2, contributed by Paolo Losi [1],

is available as a separate patch in the ns website. This implementation of WFQ has an

infinite queue size and the scheduler never drops a packet. To avoid this, the source code of

WFQ implementation was modified to limit the size of the queue. In this modified version

of WFQ, the shared buffer size of the queue can be limited in terms of either packets or

bytes. One flow may overwhelm the entire queue by sending packets at a high rate. This

will affect the other flows since their packets will be dropped when the shared buffer size

exceeds the limit. To overcome this problem, each flow is assigned a separate limit based

on their weight. When the queue limit is exceeded, only the packets belonging to the flow

that has exceeded its own limit is dropped.

TSFQ and TSFQAggregClassifier are the two important classes that define the

functioning of the TSFQ. TSFQ class, derived from the base class Queue, is the main

queue class of the TSFQ implementation. A TSFQ object is instantiated when a TSFQ

queue is defined on a link connecting two nodes. Every TSFQ object defined in the network

is associated with a TSFQAggregClassifier object. TSFQAggregClassifier object holds the

necessary details for the functioning of the queue. It holds the following details of a TSFQ

object:

• The weights associated with the queues (flow-queues) defined within the TSFQ sched-

uler.

• The weights associated with the service levels defined in the TSFQ scheduler.

• The flow to queue mapping of all the flows passing through the TSFQ scheduler.
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• The flow to service level mapping of all the flows.

The TSFQAggregClassifier class implements all the functionality required for the appropri-

ate initialization and manipulation of the TSFQ objects. The TSFQAggregClassifier object

should be created during simulation initialization, which should be followed by assigning

weights to flows and service levels. The following is the syntax for assigning weights to flows

and service levels:

1. $ < tsfqclassifier − object > setqueue < flow − id >< queue− id >

2. $ < tsfqclassifier − object > setweight < queue− id >< weight >

3. $ < tsfqclassifier − object > settier − weight < tier − id >< weight >

Line 1 maps a flow to a queue, while lines 2 and 3 assigns a weight to a queue and a service

level respectively.

The TSFQ object is the actual queue object placed before the link. The TSFQ

object receives the packets, that needs to be transmitted on the associated channel, en-

queues and serves them appropriately. The packets may be received from an upstream

node or generated by the node itself. The TSFQ object holds a reference to its associated

TSFQAggregClassifier object. A reference to the TSFQAggregClassifier object is passed to

the TSFQ object using the install Tcl command. The syntax for install command:

$ns tsfqclassifier− install < from−node > < to−node > < tsfqclassifier− object >

The pure virtual functions of the base class Queue, enque and deque, are implemented in

the TSFQ class. The enque function is automatically invoked by the arrival of a packet

at the scheduler. The deque function is also automatically invoked when the outgoing link

becomes idle. The flow queues and service-level FIFOs are implemented as linked list data

structures. Each element in the list structure represents a packet in the FIFO. Each element

contains a reference to the packet it represents and its associated virtual finish time.

The enque method inserts the packet in the corresponding flow queue. If the packet

is the head-of-line packet of the flow queue, then a reference of the packet is also inserted at

the tail of the associated service level queue. The enque method also calculates the virtual

finish times of all the packets that arrive at the queue. The deque method compares the

virtual finish times of all the head-of-line packets and determines the packet with the least
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virtual finish time. The packet is removed from the list structure and returned. If flow

queue of the packet is not empty, the head-of-line packet of the flow queue is inserted to

the tail of the service level queue. The TSFQ class also includes methods to keep track of

the GPS virtual time. The schedule method is invoked at the virtual arrival and virtual

departure of a packet from the scheduler. Virtual arrival denotes the arrival of a packet

at the service-level FIFO and Virtual departure denotes the departure of a packet in the

emulated GPS system. The schedule method schedules an event at the least virtual finish

time. The event handler function updates the virtual time of the scheduler by virtually

departing the packet with the least virtual finish time.
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Chapter 6

Numerical Results

We now present a set of numerical results comparing the performance of several

packet scheduling techniques discussed in Chapters 3 and 4:

1. WFQ

2. WRR - Smooth

3. TSFQ V.1

4. TSFQ V.2

5. TSFQ V.3

We consider four different scenarios which are discussed in each of the following subsections.

For all the scenarios, the topology we used is shown in Figure 6.1. Nodes 1 - 4 are the source

nodes, nodes 7 - 10 are the destination nodes, and nodes 5 and 6 are the intermediate nodes.

Here, the queue of interest is the queue at node 5. The outgoing link associated with this

queue has a bandwidth of 2Mbps.

In our simulations, we used three arrival processes: Constant Bit Rate (CBR),

Exponential and Pareto with a shape parameter of 1.5. Each flow is associated with a

single arrival process, and its packet arrivals are generated according to this process:

• CBR flows are characterized by their average rates.
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Figure 6.1: Topology used for the simulations

• Exponential flows are characterized by their average rates and the percentage of their

on/off times.

• Pareto flows are also characterized by their average rates and the percentage of their

on/off times.

We use the following peformance metrics to characterize and compare the performance of

the various packet scheduling algorithms:

1. Packet departure times: We are interested in showing that TSFQ scheduler versions

serve packets in an order similar to that of WFQ, provided that the quantized weights

of the flows in TSFQ are the same as the weights of flows in WFQ. Hence, we measure

the packet departure order of various versions of TSFQ and WRR relative to WFQ. To

compute the departure order of the schedulers relative to WFQ, individual departure

times of 100 packets were noted for each scheduler sch and then the relative departure

of the scheduler rdepsch was calculated using the formula

rdepsch = depsch − depWFQ (6.1)

where depsch and depWFQ denote the individual departure times of packets under the

schedulers sch and WFQ respectively.

2. Short-term throughput : This performance metric characterizes the fairness property

of the packet scheduling algorithms. Since we are interested in showing that TSFQ
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provides better fairness among flows than WRR, we measured the short-term through-

put of the packet scheduler. The short-term throughput of a flow was computed by

measuring the amount of its bytes served by the scheduler over an interval of 50ms.

The relative short-term throughput of the flow served by a scheduler sch (RSTTPsch)

is then computed using the formula

RSTTPsch =
STTPsch

STTPWFQ
(6.2)

where STTPsch and STTPWFQ denote the short-term throughputs of the flow under

the schdulers sch and WFQ respectively.

3. Average and worst-case delay : Since delay is an important performance measurement

for any QoS-aware network, we measured the average and worst-case delay of the

flows served by the schedulers.

The following subsections describe each experimental scenario and discusses the results in

detail.

6.1 Fixed-Size Packets with a Single Service level

In this experiment, we consider fixed-size packet traffic, and we assume that all

flows are assigned to the same service level with weight φ. We simulated 10 flows, which

were classified as follows:

• five flows are CBR flows with average rates of 220 Kbps, 350 Kbps, 240 Kbps, 280

Kbps and 160 Kbps.

• three flows are exponential flows with average rates of 190 Kbps, 200 Kbps and 130

Kbps and on/off times of 0.7/0.3, 0.25/0.75 and 0.5/0.5.

• two flows are pareto flows with average rates of 400 Kbps and 200 Kbps and on/off

times of 0.5/0.5 and 0.7/0.3.

All the flows generate packets of size 210 bytes and have same weights in all the scheduling

techniques.

Figure 6.2 shows the relative departure of packets from all flows and Figures 6.3

and 6.4 show the relative departure of packets from a single flow. Since the measure is
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Figure 6.2: Relative Departure - Single service level, Fixed-size packets - over all flows

relative to WFQ, the relative departure value of WFQ is always zero. From these figures,

we can see that TSFQ V.3 has the same departure order as that of WFQ. These figures also

show that the TSFQ versions 1 and 2 differ from WFQ by only a small amount compared

to WRR.

Figures 6.5 and 6.6 show the short-term throughput of two flows under different

scheduling schemes, relative to WFQ. Since the measure is relative to WFQ, it is always

one for WFQ. It can be seen from these figures that the relative short-term throughput of

WRR exhibit heavy fluctuations, thereby indicating poor fairness among flows. In WRR,

a flow may significantly under perform or over perform. Even though TSFQ versions 1

and 2 exhibit fluctations, they are smaller compared to WRR. Since TSFQ version 3 serves

packets in the same order as that of WFQ, its relative throughput is also always one.
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Figure 6.3: Relative Departure - Single service level, Fixed-size packets - over Flow 1

6.2 Fixed-Size Packets with Multiple Service Levels

We conducted two sets of experiments for this scenerio, one with a small set of

flows and one with a larger set of flows.

6.2.1 Small Set of Flows

In this experiment, we consider fixed-size packet traffic of 20 flows mapped to 5

different service levels with weights 0.05, 0.1, 0.15, 0.25 and 0.4. Each service level has

different number of flows mapped to it, with 8 flows getting mapped to service level with

weight 0.05, 7 flows mapping to service level with weight 0.15, 4 flows mapping to service

level with weight 0.25 and the remaining one flow getting mapped to service level with

weight 0.4. The flows generate packets of size 210 bytes and they can be classified as

follows:

• ten flows are CBR flows with average rates of 110 Kbps, 175 Kbps, 140 Kbps, 120

Kbps, 200 Kbps, 80 Kbps, 100 Kbps, 150 Kbps, 90 Kbps and 160 Kbps.
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Figure 6.4: Relative Departure - Single service level, Fixed-size packets - over Flow 2

• seven flows are exponential flows with average rates of 90 Kbps, 100 Kbps, 50 Kbps,

80 Kbps, 200 Kbps, 110 Kbps and 130 Kbps and on/off times of 0.7/0.3, 0.5/0.5,

0.8/0.2, 0.7/0.3, 0.2/0.8, 0.5/0.5 and 0.25/0.75.

• three flows are pareto flows with average rate of 150 Kbps and 200 Kbps and on/off

times of 0.4/0.6 and 0.5/0.5.

Figure 6.7 shows the relative departure of packets from all flows and Figures 6.8

and 6.9 show the relative departure of packets from a single flow. Figures 6.10 and 6.11

show the short-term throughput of two flows under different scheduling schemes, relative

to WFQ. From the figures, we see that there is a slight change in the departure order of

packets between TSFQ V.3 and WFQ. This because, WFQ serves packets in the order of

their virtual finish time whereas TSFQ V.3 serves packets within a single service level in the

order of their virtual start time and is equivalent to WF 2Q within a service level. Other

observations from these figures are similar to those in the previous section.
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Figure 6.5: Relative Throughput - Single service level, Fixed-size packets - Flow 1

6.2.2 Large Set of Flows

In this second experiment, we simulate a fixed-size packet traffic of 1000 flows

mapped to 10 different service levels. Each service level has different number of flows

mapped to it and each flow has different set of parameters. The average rates of the flows

vary from 1 kbps to 200 kbps. Figure 6.12 shows the relative departure of packets from

all flows and Figures 6.13 and 6.14 show the relative departure of packets from a single

flow. Figures 6.15 and 6.16 show the short-term throughput of two flows under different

scheduling schemes, relative to WFQ. The observations from these figures are similar to

those in the previous section.

6.3 Variable-Size Packets with a Single Service Level

In this experiment, we consider variable-size packet traffic, and we assume that all

flows are assigned to the same service level with weight φ. We simulated 10 flows, similar

to those described in the Section 6.1 in terms of arrival processes and average rates. But
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all flows
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Figure 6.11: Relative Throughput - Multiple service levels, Fixed-size packets - 20 flows -
Flow 2
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Figure 6.12: Relative Departure - Multiple service levels, Fixed-size packets - 1000 flows -
over all flows
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Figure 6.13: Relative Departure - Multiple service levels, Fixed-size packets - 1000 flows -
over Flow 1
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Figure 6.14: Relative Departure - Multiple service levels, Fixed-size packets - 1000 flows -
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Figure 6.16: Relative Throughput - Multiple service levels, Fixed-size packets - 1000 flows
- Flow 2
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Figure 6.18: Relative Departure - Single service level, Variable-size packets - over Flow 1

in this experiment, the flows generated packets whose size varied from 100 to 600 bytes.

Nearly 90% of the packets generated were of size 210 bytes and the remaining packets were

of different sizes. In this experiment, we also compared the sorted versions of TSFQ with

the unsorted versions. In the sorted version of TSFQ, the packets which are sent to the

FIFO queues which hold packets of sizes in between the common packet sizes are sorted. In

the unsorted version, these packets are simply added to the tail of the FIFO without any

sorting.

Figure 6.17 shows the relative departure of packets from all flows and Figures

6.18 and 6.19 show the relative departure of packets from a single flow. Like the figures of

fixed-size packets in the previous section, these figures also show that the TSFQ versions’

departure order is closer to that of WFQ. We can also see from the figures that the unsorted

versions of TSFQ have the same departure order as that of sorted versions. From this we

infer that it is not really necessary to sort the packets of uncommon sizes since their arrival

rate is low in a traffic with 90 - 10 common to uncommon sized packets ratio and the packets

are spread over different FIFO queues.
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Figure 6.19: Relative Departure - Single service level, Variable-size packets - over Flow 2
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Flow 1
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Figure 6.21: Relative Throughput - Single service level, Variable-size packets - 10 flows -
Flow 2

Figures 6.20 and 6.21 show the relative throughputs of two flows under different

schedulers. Similar to the case of fixed-size packets, WRR exhibits heavy fluctuations and

hence poor fairness among flows. The figures also show that TSFQ versions, sorted and

unsorted, provide better short-term fairness than WRR and TSFQ version 3 provide very

similar fairness as that of WFQ. The unsorted version of TSFQ versions provide the same

fairness as that of sorted versions of TSFQ.

6.4 Variable-Size Packets with Multiple Service Levels

In this experiment, we consider variable-size packet traffic, and we assume that

different flows are assigned to different service levels. We simulated 1000 flows mapped to

10 different service levels, each with its own weight. The average rates of the flows varied

from 1 kbps to 200 kbps. The flows generated packets of sizes varying from 100 bytes to 600

bytes. Similar to the experiment in previous section, the ratio of common to uncommon

packet sizes was approximately 90 to 10. Figure 6.22 shows the relative departure of packets
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Figure 6.22: Relative Departure - Multiple service levels, Variable-size packets - over all
flows
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Figure 6.23: Relative Departure - Multiple service levels, Variable-size packets - over Flow
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Figure 6.24: Relative Departure - Multiple service levels, Variable-size packets - over Flow
2
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Figure 6.25: Relative Throughput - Multiple service levels, Variable-size packets - 1000
flows - Flow 1
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Figure 6.26: Relative Throughput - Multiple service levels, Variable-size packets - 1000
flows - Flow 2
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Figure 6.27: Average Delay - Multiple service levels, Variable-size packets - 1000 flows
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Figure 6.28: Worst Case Delay - Multiple service levels, Variable-size packets - 1000 flows

from all flows and Figures 6.23 and 6.24 show the relative departure of packets from a single

flow. Figures 6.25 and 6.26 show the relative short-term throughputs of two flows under

different scheduling schemes. The observations made from these figues are similar those

from the previous section.

Figures 6.27 and 6.28 show the average and worst-case delays of the flows in dif-

ferent schedulers. The flows are gruoped by their tier ID. So, each point in the graph

correspond to either the average or worst-case delay of all the packets belonging to a partic-

ular tier. We can observe from these figures that the delay values decrease with increase in

the tier ID. This is because tiers with higher tier ID have greater weights. We can also see

that the delay values of WRR differ widely from that of WFQ, whereas the packets served

by the TSFQ schedulers experience delays similar to that of WFQ. Also, for all tiers except

one, the worst case delay of WRR is the highest.
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6.5 Discussion of Findings

The results obtained from the simulations can be summarized into the following

points.

• Even though WRR is efficient in terms of running time complexity, it does not pro-

vide proper fairness among the flows served. In all the experiments, the short-term

throughput of the flows exhibited heavy fluctuations, showing that the flows served by

WRR may significantly over-perform or under-perform. Its service order also varies

considerably from that of the PGPS and GPS service order.

• Since WFQ serves the packets in the GPS service order, it provides very good fairness

among flows. But, WFQ has a running time complexity of O(log n), where n is the

number of flows.

• TSFQ V.1 scheduler provides better fairness among the flows than WRR. Its packet

service order is closer to that of the PGPS service order, even though there are few

situations in which the service order changes from that of PGPS. We also know that

TSFQ V.1 has constant time operational complexity.

• TSFQ V.2 scheduler performs similar to that of TSFQ V.1 scheduler in terms of

fairness and service order, although the situations in which the service order changes

differ from that of TSFQ V.1. Also, the changes in service order is slightly lesser than

TSFQ V.1. This is achieved by doubling the number of service-level FIFOs, but still,

TSFQ V.2 scheduler has a constant time operational complexity.

• TSFQ V.3 Scheduler peforms very similar to WFQ, in terms of fairness among flows

and service order. There is a slight difference in the service order between TSFQ V.3

and WFQ under a few circumstances, since TSFQ V.3 serves packets within a service

level in the order of their virtual start time rather than the virtual finish time. TSFQ

V.3 scheduler also has a constant-time operation, even though it requires maintaining

additional GPS queues.

• The experiments involving variable-size packets revealed that sorting FIFOs that hold

packets of different sizes is not necessary for a traffic consisting 90% of packets with

common sizes. Since Internet traffic consists of more than 90% of packets with common
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sizes [10], we can safely say that no sorting operations are necessary for packets with

uncommon sizes.
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Chapter 7

Summary and Future Work

7.1 Summary

We have considered the problem of applying the concept of traffic quantization in

packet scheduling, in order to improve the efficiency without affecting the QoS guaranteed

to the flows. Our objective was to develop a new packet scheduling scheme that provides

good fairness among flows and at the same time, also operates at constant running time.

We achieved this by assigning each flow in the network to one of a small set of service levels

(tiers), in such a way that the QoS at least as good as requested by the flow is guaranteed.

We presented three different versions of the new packet scheduler, TSFQ, each with its own

advantages and issues. We showed how these schedulers operate in constant order of time,

in both the fixed-size packet and variable-sized packet traffic. We also wanted to study the

performance of the scheduling techniques in terms of fairness and service order. Finally,

we showed from the simulation results that TSFQ versions offer better fairness than WRR,

with TSFQ V.3 providing fairness as good as WFQ.

7.2 Future Work

Our work may be extended in many ways some of which we outline.

• We considered packet scheduling over a single link. Further research needs to be done
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to extend this packet scheduling scheme to operate over multiple links.

• We obtained results from running simulations on the implemention of the TSFQ

versions in ns−2 simulator. It would be interesting to study the performance of these

TSFQ schedulers from a linux kernel implementation.

• We studied the performance of TSFQ schedulers in terms of fairness and efficiency.

It would be interesting to study the performance of the TSFQ schedulers in terms of

network control, management and other costs.

• We selected WFQ and WRR to compare with TSFQ performance. It would also be

interesting to compare the performance of TSFQ schedulers with other schedulers.
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