Perspectives on Future Internet Design

George N. Rouskas

Department of Computer Science North Carolina State University http://rouskas.csc.ncsu.edu/

Outline

- Research on Future Internet Architectures
- Our Experience:
 - SILO and GENI IMF: Design for Change
 - ChoiceNet: Design for Choice

Sri Lanka Fiber Connectivity

SEA-ME-WE-4

Historical Perspective

Current Internet Architecture

Shift in Requirements

Shift in Requirements

Scale: Academic pursuit ↔ Commercial platform

- Scale: Academic pursuit ↔ Commercial platform
- Security: Trusted entities ↔ Untrusted systems

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- **Solution** Resilience: Research \leftrightarrow Commodity

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- Mobility: Identity and location in one \leftrightarrow Mobility is the norm

- Scale: Academic pursuit ↔ Commercial platform
- **Security**: Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- **Mobility:** Identity and location in one \leftrightarrow Mobility is the norm
- Performance: Best-effort delivery, stateless ↔ QoS guarantees

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- **Mobility:** Identity and location in one \leftrightarrow Mobility is the norm

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- **Mobility:** Identity and location in one \leftrightarrow Mobility is the norm

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- **Mobility:** Identity and location in one \leftrightarrow Mobility is the norm

- **Connectivity:** Persistent end systems \rightarrow Delay tolerant networks

- Scale: Academic pursuit ↔ Commercial platform
- **Security:** Trusted entities \leftrightarrow Untrusted systems
- Resilience: Research ↔ Commodity
- **Mobility:** Identity and location in one \leftrightarrow Mobility is the norm

- Connectivity: Persistent end systems \rightarrow Delay tolerant networks
- **Focus:** Machine-to-machine \rightarrow Human-to-human

Additional Considerations

Flexibility and evolvability to future changes

 \rightarrow overcome high barrier to entry for new protocols/architectures

Additional Considerations

- Flexibility and evolvability to future changes

 → overcome high barrier to entry for new protocols/architectures
- Inter-layer interactions/controls
 - \rightarrow accommodate cross-layer design

Additional Considerations

- Flexibility and evolvability to future changes
 overcome high barrier to entry for new protocols/architectures
- Inter-layer interactions/controls
 - \rightarrow accommodate cross-layer design
- Energy-efficient protocol design
 - → integrate energy-conscious systems (sensors)

Additional Considerations

- Flexibility and evolvability to future changes
 overcome high barrier to entry for new protocols/architectures
- Inter-layer interactions/controls
 - \rightarrow accommodate cross-layer design
- Energy-efficient protocol design
 - → integrate energy-conscious systems (sensors)

- Deploy half-layer solutions (MPLS, IPSec)
 - \rightarrow layers become markers for vague functional boundaries

- Deploy half-layer solutions (MPLS, IPSec)
 - \rightarrow layers become markers for vague functional boundaries
- Adapt existing implementation to new situations
 TCP over wireless/large bw/delay product networks

- Deploy half-layer solutions (MPLS, IPSec)
 A layers become markers for vague functional boundaries
- Adapt existing implementation to new situations
 TCP over wireless/large bw/delay product networks
- Implement own UDP-like data transfer
 - \rightarrow no reuse or kernel optimizations

- Deploy half-layer solutions (MPLS, IPSec) → layers become markers for vague functional boundaries
- Adapt existing implementation to new situations
 TCP over wireless/large bw/delay product networks
- Implement own UDP-like data transfer
 - \rightarrow no reuse or kernel optimizations
- Abandon the old: new implementations for sensor networks
 - → Internet balkanization

Clean Slate Design

- Design a system "from scratch":
 - without being restrained by existing system
 - using accumulated knowledge and experience
 - having a fresh, unbiased look at the problem space
- Several challenges:
 - holistic approach considering all aspects
 overall redesign of the architecture
 - experimentation "at scale"
 - \rightarrow gain insight, mitigate risk
 - accommodate future changes

Three-Step Approach

- 1. Innovations in various specific aspects of the Internet
 - US: NSF Future Internet Design (FIND) $\approx 50 \text{ projects: SILO, PoMo, NetServices, } \cdots$
 - EU: Network of the Future $\approx 90 \text{ projects: Trilogy, Eiffel, Sensei, \cdots}$
 - Japan: New Generation Network (NWGN, shorter term)
 - China: New Generation Trustworthy Networks, New Generation Network Architectures

NC STATE UNIVERSITY Three-Step Approach (cont'd)

- 2. Collaborative projects: integrate innovations into overall architecture
 - US: NSF Future Internet Architecture (FIA) NDN, MobilityFirst, NEBULA, XIA
 - EU: Future Internet Assembly (FIA)
 4WARD
 - Japan: NWGN (longer term) AKARI
 - China: Future Internet Architectures

NC STATE UNIVERSITY Three-Step Approach (cont'd)

- 3. Testbeds for real-scale experimentation
 - US: Global Environment for Network Innovations (GENI)
 - EU: Future Internet Research and Experimentation (FIRE)
 - Japan: JGN2+, JGN-X
 - China: China Next Generation Internet (CNGI)

US FIA Projects

- 1. Named Data Networking (NDN) UCLA (lead)
 - content-centric, focus on "what" not "where"
 - secure data, not transmission channel or data path
- 2. MobilityFirst Rutgers (lead)
 - address cellular convergence (4-5B devices), connect vehicles
 - pervasive system to interface humans with physical world
- 3. NEBULA UPenn (lead)
 - reliable, high-speed core interconnecting data centers
 - mobile "roaming" users connect to nearest data center
- 4. eXpressive Internet Architecture (XIA) Carnegie Mellon (lead)
 - rich set of communication entities as network principals
 - intrinsic security using self-certifying identifiers

Narrow Waist of NDN

NC STATE UNIVERSITY GENI: Core Concepts

Programmability:

- download SW into GENI nodes to control their behavior
- Virtualization/Resource Sharing
 - nodes implement virtual machines \rightarrow shared infrastructure
 - experiments run within own, isolated slice of GENI resources
- Federation
 - different parts of GENI suite owned/operated by different entities
- Slice-Based Experimentation
 - connected set of reserved resources in diverse locations
 - remotely discover, reserve, program, operate, manage, teardown

GENI Slices

What is "Architecture"?

fundamental elements/principles \leftrightarrow design decisions

What is "Architecture"?

fundamental elements/principles \leftrightarrow design decisions

Diverse points of view

 \rightarrow FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, technologies (wireless, optical), \cdots

What is "Architecture"?

fundamental elements/principles \leftrightarrow design decisions

Diverse points of view

 \rightarrow FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, technologies (wireless, optical), \cdots

Our definition:

What is "Architecture"?

fundamental elements/principles \leftrightarrow design decisions

Diverse points of view

 \rightarrow FIND projects target: addressing, naming, routing, protocol architecture, security, management, economics, technologies (wireless, optical), \cdots

Our definition:

it is precisely the characteristics of the system that does not change itself, but provides a framework within which the system design can change and evolve

NC STATE UNIVERSITY Meta-Design Framework

- Obtain a meta-design that explicitly allows for future change
- Not a particular design or arrangement of specific features

NC STATE UNIVERSITY Meta-Design Framework

- Obtain a meta-design that explicitly allows for future change
- Not a particular design or arrangement of specific features

The goal is not to design the "next" system, or the "best next" system, but rather a system that can sustain continuing change

NC STATE UNIVERSITY SILO Architecture Highlights

- Building Blocks: services of fine-grain functionality
- Design Principles:
 - 1. Generalize traditional layer stack
 - 2. Enable inter-layer interactions:
 - knobs: explicit control interfaces
 - 3. Design for change:
 - facilitate introduction of new services
 - 4. Separate control from data functions

NC STATE UNIVERSITY Generalization of Layering

- Silo: vertical composition of services
 - \rightarrow preserves layering principle
- Per-flow instantiation of silos
 - \rightarrow introduces flexibility and customization
- Decoupling of layers and services
 - \rightarrow services introduced at point in stack where necessary

Silos: Generalized Protocol Stacks

NC STATE UNIVERSITY Inter-Layer Interactions (1)

- Model interfaces
 - adjustable parameters specific to functionality of service
 - enable info exchange among services
- Algorithms may optimize jointly the behavior of services in a silo

Inter-Layer Interactions (2)

Upward information passing

Inter-Layer Interactions (2)

Downward information passing

NC STATE UNIVERSITY Inter-Layer Interactions (2)

Up-and-down information passing

Inter-Layer Interactions (2)

Silo-wide optimization/calibration

Design for Change

- Architecture does not dictate services to be implemented
- Provide mechanisms to:
 - introduce new services
 - compose services into silos
- Ontology of services: describes
 - \square service semantics \rightarrow function, data/control interfaces
 - relationship among services \rightarrow relative ordering constraints

NC STATE UNIVERSITY Ontology – Networking Knowledge

Service Composition

- Constraints on composing services A and B:
 - A requires B
 - A forbids B
 - A must be above (below) B
 - A must be immediately above (below) B
 - Negations, AND, OR
- Minimal set:
 - Requires, Above, ImmAbove, NotImmAbove
- All pairwise condition sets realizable
 - Forbids = (A above B) AND (B above A)
 - Above = NOT Below

NC STATE UNIVERSITY Service Composition Problem

- Given: a set of essential services application
- Obtain a valid ordering of these and additional services
 - or, identify conflicts with constraints
- Simple composition algorithm implemented
- Ongoing research in formalizing the problem

The SILO Hourglass

The SILO Hourglass

NC STATE UNIVERSITY SILO Software Prototype

http://net-silos.net/

Prototype Architecture

SILO As a Research Tool

NC STATE UNIVERSITY SILO As a Research Tool

- Deploys in a slice
- Researcher brings:
 - custom services
 - tuning algorithms
 - ontology updates

NC STATE UNIVERSITY IMF Physical Infrastructure

IMF Cross-Service Demo

IMF Demo – Results

IMF Demo – Results

NC STATE UNIVERSITY ChoiceNet: Design for Choice

- Choice a key aspect of a network architecture → drive transformative innovations
- New features and mechanisms for:
 - dynamically introducing new alternatives
 - selecting among alternatives
 - introducing economic processes and incentives to trigger innovation

NC STATE UNIVERSITY ChoiceNet: Key Principles

NC STATE UNIVERSITY ChoiceNet Aspects in a Network

Recent Book

ICIIS 2011, August 17, 2011 - p.4

Perspectives on Future Internet Design