RWA in WDM Rings: Efficient Exact Formulations Based on Maximal Independent Sets

George N. Rouskas

Department of Computer Science North Carolina State University

Joint work with: Dr. Emre Yetginer (Tubitak, Turkey), Zeyu Liu (NCSU)

Outline

- Routing and Wavelength Assignment (RWA)
- Existing ILP Formulations
- New ILP Formulations Based on
 - MIS Decomposition
 - MIS Selection
- Numerical Results
- Conclusion and Future Research Directions

Why "RWA in Rings"?

NC STATE UNIVERSITY Why "RWA in Rings"?

Why "RWA"?

- subproblem of all optical network design problems
 → speed up "what-if" analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
- intellectually appealing!

NC STATE UNIVERSITY Why "RWA in Rings"?

Why "RWA"?

- subproblem of all optical network design problems
 → speed up "what-if" analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
- intellectually appealing!
- Why "Rings"?
 - ring topologies prevalent today and in foreseeable future
 - insight into RWA problem in mesh topologies

NC STATE UNIVERSITY Routing and Wavelength Assignment (RWA)

- Fundamental control problem in optical networks
- Objective: for each connection request determine a lightpath, i.e.,
 - a path through the network, and
 - a wavelength
- Two variants:
 - 1. online RWA: connection requests arrive/depart dynamically
 - 2. static RWA: a set of traffic demands to be established simultaneously

Static RWA

- Input:
 - network topology graph G = (V, E)
 - traffic demand matrix $T = [t_{sd}]$
- Objective:
 - minRWA: establish all demands with the minimum # of λ s
 - maxRWA: maximize established demands for a given # of λ s
- Constraints:
 - wavelength continuity: each lightpath uses the same λ along path
 - distinct wavelength: lightpaths using the same link assigned distinct $\lambda {\rm s}$
- NP-hard problem (both variants)

Solution Approaches

- 1. ILP formulations
 - Link-based
 - Path-based
 - MIS-based
- 2. Heuristics
 - Decomposition: R & WA
 - Multi-layer graph
 - **_** ...

Challenges

- Existing approaches do not scale well with:
 - network size
 - number of wavelengths
- Quality of heuristics is difficult to characterize
- Large λ regime not explored

RWA Example

RWA: Symmetry

Link ILP Formulation

- Nodes/links are entities of interest
- Focus on traffic demand to and from <u>nodes</u>, on <u>links</u>

Bridging variable: demand between nodes on links

Path ILP Formulation

- Nodes/paths are entities of interest
- Demand is still between nodes
- For each given demand node pair, list all paths \rightarrow typically, a subset of all paths

- \blacksquare assign variable to path traffic flow \rightarrow implicitly identifies demand
- for each link, sum up path flow variables
 - \rightarrow constrain with capacities

NC STATE UNIVERSITY RWA As Graph Coloring

NC STATE UNIVERSITY Maximal Independent Sets

- Independent set: a set of vertices in a graph no two of which are adjacent
- Maximal independent set: not a subset of any other independent set

MIS ILP Formulation

- Precompute k paths for each source-destination pair
- Create the path graph G_p :
 - each node in G_p corresponds to a path in the original network
 - two nodes connected in G_p if corresponding paths share a link
- Enumerate the MISs of G_p
- Set up ILP to assign wavelengths to each MIS

Comparison

Formulation	# Variables	# Constraints	Symmetry?
Link	$O(N^4W)$	$O(N^3 W)$	Yes
Path	$O(N^2 W)$	$O(N^2 W)$	Yes
MIS	$O(3^{N^2/3})$	$O(N^2)$	$No \rightarrow future-proof$

INFORMS TELECOM 2010, May 7, 2010 - p.10

NC STATE UNIVERSITY MIS Decomposition for Rings: MISD-2

Clockwise paths do not intersect with counter-clockwise paths:

$$G_p = G_p^{cw} \cup G_p^{ccu}$$

$$M^{cw} = M^{ccw} = \sqrt{M}$$

 \rightarrow orders of magnitude decrease in # of variables/size of formulation

Slight modifications to formulation

NC STATE UNIVERSITY Further Decomposition: MISD-4

- Consider clockwise direction only
 - \rightarrow similar steps for counter-clockwise
- Partition ring in two parts such that:

MISD-4 (cont'd)

Express each MIS
$$m$$
 of G_p^{cw} as:

$$m = m^0 \cup m^1 \cup q$$

- Modify the formulation appropriately

 - # constraints 1
- Recursively partition the two ring parts to effect higher-order decompositions (MISD-8, MISD-16, ...)

Results: # of MIS Variables

Results: Scalability with W

Discussion

9 16-node ring solution takes < 1 sec for any # of λ s

 \rightarrow problem solved !

Discussion

- 16-node ring solution takes < 1 sec for any # of λ s → problem solved !
- Can we apply MIS decomposition to mesh networks?

Discussion

- 16-node ring solution takes < 1 sec for any # of λ s → problem solved !
- Can we apply MIS decomposition to mesh networks?
 - yes and it works well

Discussion

- 16-node ring solution takes < 1 sec for any # of λ s → problem solved !
- Can we apply MIS decomposition to mesh networks?
 - yes and it works well
 - ▶ but: size of initial MIS set orders of magnitude larger
 → back to the drawing board

of MIS Variables

Can We Do Better?

Can We Do Better?

- # of MIS variables: millions or more
- \checkmark # of non-zero variables in optimal solution: < 100

- # of MIS variables: millions or more
- \checkmark # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist

Observations

- # of MIS variables: millions or more
- \checkmark # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist

 \rightarrow Some MIS variables important, others not

- # of MIS variables: millions or more
- \checkmark # of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
 - → Some MIS variables important, others not
- Can we identify the important ones?

MIS Selection

- Prune useless MIS variables
 - \rightarrow those containing paths with no traffic
- Rank remaining MIS variables in decreasing order of weight:
 - path (node) weight:

$$w = \text{degree}^2 \times \text{traffic}$$

MIS weight:

$$\sum_{\text{node } i \ \in \ \text{MIS}} w_i$$

Include only top 10% of ordered MIS variables in formulation

Results

Tradeoff

MIS Generation

- Large rings and mesh networks:
 - bottleneck shifts from CPLEX to enumeration of MIS variables
 - MIS set cannot fit in memory
- New algorithms needed: enumerate only most promising MIS variables
 - topic of ongoing research

NC STATE UNIVERSITY Conclusion & Ongoing Research

- Current research focuses on:
 - extending MIS selection to mesh networks
 - efficient ILP formulations for optical network design problems
 - incorporate MIS decomposition for RWA
 - employ problem-specific knowledge