RWA in WDM Rings: Efficient Exact Formulations Based on Maximal Independent Sets

George N. Rouskas

Department of Computer Science
North Carolina State University

Joint work with: Dr. Emre Yetginer (Tubitak, Turkey), Zeyu Liu (NCSU)

Outline

- Routing and Wavelength Assignment (RWA)
- Existing ILP Formulations
- New ILP Formulations Based on
- MIS Decomposition
- MIS Selection
- Numerical Results
- Conclusion and Future Research Directions

Why "RWA in Rings"?

Why "RWA in Rings"?

- Why "RWA"?
- subproblem of all optical network design problems
\rightarrow speed up "what-if" analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
- intellectually appealing!

Why "RWA in Rings"?

- Why "RWA"?
- subproblem of all optical network design problems
\rightarrow speed up "what-if" analysis to test sensitivity of solution to forecast demands, cost projections, price structures, etc.
- intellectually appealing!
- Why "Rings"?
- ring topologies prevalent today and in foreseeable future
- insight into RWA problem in mesh topologies

Routing and Wavelength Assignment (RWA)

- Fundamental control problem in optical networks
- Objective: for each connection request determine a lightpath, i.e.,
- a path through the network, and
- a wavelength
- Two variants:

1. online RWA: connection requests arrive/depart dynamically
2. static RWA: a set of traffic demands to be established simultaneously

Static RWA

- Input:
- network topology graph $G=(V, E)$
- traffic demand matrix $T=\left[t_{s d}\right]$
- Objective:
- minRWA: establish all demands with the minimum \# of $\lambda \mathrm{s}$
- maxRWA: maximize established demands for a given \# of $\lambda \mathrm{s}$
- Constraints:
- wavelength continuity: each lightpath uses the same λ along path
- distinct wavelength: lightpaths using the same link assigned distinct λs
- NP-hard problem (both variants)

Solution Approaches

1. ILP formulations

- Link-based
- Path-based
- MIS-based

2. Heuristics

- Decomposition: R \& WA
- Multi-layer graph
- ...

Challenges

- Existing approaches do not scale well with:
- network size
- number of wavelengths
- Quality of heuristics is difficult to characterize
- Large λ regime not explored

RWA Example

RWA: Symmetry

Link ILP Formulation

- Nodes/links are entities of interest
- Focus on traffic demand to and from nodes, on links

- Bridging variable: demand between nodes on links

Path ILP Formulation

- Nodes/paths are entities of interest
- Demand is still between nodes
- For each given demand node pair, list all paths
\rightarrow typically, a subset of all paths

- assign variable to path traffic flow \rightarrow implicitly identifies demand
- for each link, sum up path flow variables
\rightarrow constrain with capacities

RWA As Graph Coloring

Maximal Independent Sets

- Independent set: a set of vertices in a graph no two of which are adjacent
- Maximal independent set: not a subset of any other independent set

MIS ILP Formulation

- Precompute k paths for each source-destination pair
- Create the path graph G_{p} :
- each node in G_{p} corresponds to a path in the original network
- two nodes connected in G_{p} if corresponding paths share a link
- Enumerate the MISs of G_{p}
- Set up ILP to assign wavelengths to each MIS

Comparison

Formulation	\# Variables	\# Constraints	Symmetry?
Link	$O\left(N^{4} W\right)$	$O\left(N^{3} W\right)$	Yes
Path	$O\left(N^{2} W\right)$	$O\left(N^{2} W\right)$	Yes
MIS	$O\left(3^{N^{2} / 3}\right)$	$O\left(N^{2}\right)$	No \rightarrow future-proof

Running Time Results, $W=120$

Running Time Results, $W=120$

Running Time Results, $W=120$

MIS Decomposition for Rings: MISD-2

- Clockwise paths do not intersect with counter-clockwise paths:

$$
G_{p}=G_{p}^{c w} \cup G_{p}^{c c w}
$$

- $M, M^{c w}, M^{c c w}:$ \# of MISs of $G_{p}, G_{p}^{c w}, G_{p}^{c c w}$:

$$
M^{c w}=M^{c c w}=\sqrt{M}
$$

\rightarrow orders of magnitude decrease in \# of variables/size of formulation

- Slight modifications to formulation

Further Decomposition: MISD-4

- Consider clockwise direction only
\rightarrow similar steps for counter-clockwise
- Partition ring in two parts such that:

$$
G_{p,}^{c w}=G_{p}^{c w, 0} \cup G_{p}^{c w, 1} \cup G_{p}^{c w, c o r e}
$$

MISD-4 (cont'd)

- Express each MIS m of $G_{p}^{c w}$ as:

$$
m=m^{0} \cup m^{1} \cup q
$$

- Modify the formulation appropriately
- \# MIS variables \downarrow
- \# constraints
- Recursively partition the two ring parts to effect higher-order decompositions (MISD-8, MISD-16, . . .)

Results: \# of MIS Variables

Running Time Results, $W=120$

Results: Scalability with W

Discussion

- 16-node ring solution takes $<1 \mathrm{sec}$ for any \# of $\lambda \mathrm{s}$
\rightarrow problem solved!

Discussion

- 16-node ring solution takes $<1 \mathrm{sec}$ for any \# of $\lambda \mathrm{s}$
\rightarrow problem solved!
- Can we apply MIS decomposition to mesh networks?

Discussion

- 16-node ring solution takes $<1 \mathrm{sec}$ for any \# of $\lambda \mathrm{s}$
\rightarrow problem solved!
- Can we apply MIS decomposition to mesh networks?
- yes - and it works well

Discussion

- 16-node ring solution takes $<1 \mathrm{sec}$ for any \# of $\lambda \mathrm{s}$
\rightarrow problem solved!
- Can we apply MIS decomposition to mesh networks?
- yes - and it works well
- but: size of initial MIS set orders of magnitude larger
\rightarrow back to the drawing board

\# of MIS Variables

Can We Do Better?

Can We Do Better?

Observations

- \# of MIS variables: millions or more

Observations

- \# of MIS variables: millions or more
- \# of non-zero variables in optimal solution: <100

Observations

- \# of MIS variables: millions or more
- \# of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist

Observations

- \# of MIS variables: millions or more
- \# of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
\rightarrow Some MIS variables important, others not

Observations

- \# of MIS variables: millions or more
- \# of non-zero variables in optimal solution: < 100
- Many disjoint optimal solution sets exist
\rightarrow Some MIS variables important, others not
- Can we identify the important ones?

MIS Selection

- Prune useless MIS variables
\rightarrow those containing paths with no traffic
- Rank remaining MIS variables in decreasing order of weight:
- path (node) weight:

$$
w=\text { degree }^{2} \times \text { traffic }
$$

- MIS weight:

- Include only top 10% of ordered MIS variables in formulation

Results

Tradeoff

MIS Generation

- Large rings and mesh networks:
- bottleneck shifts from CPLEX to enumeration of MIS variables
- MIS set cannot fit in memory
- New algorithms needed: enumerate only most promising MIS variables
- topic of ongoing research

Conclusion \& Ongoing Research

- RWA problem can be solved efficiently in rings
\rightarrow extensive "what-if" analysis now possible
- Current research focuses on:
- extending MIS selection to mesh networks
- efficient ILP formulations for optical network design problems
- incorporate MIS decomposition for RWA
, employ problem-specific knowledge

