
A Framework for Tiered Service in MPLS Networks
George N. Rouskas

North Carolina State University
Nikhil Baradwaj

MicroStrategy

Abstract— Many network operators offer some type of tiered
service, in which users may select only from a small set of service
levels (tiers). Such a service has the potential to simplify a wide
range of core network functions, allowing the providers to scale
their operations efficiently. In this work, we provide a theoretical
framework for reasoning about and tackling algorithmically the
general problem of service tier selection. Drawing upon results
from discrete location theory, we formulate the problem as a
p-median problem under a new directional distance measure,
and we develop efficient algorithms for a number of important
variants. Our main finding is that, by appropriately selecting the
set of service levels, network providers may realize the benefits
of tiered service with only a small sacrifice in network resources.

I. INTRODUCTION

With currently available technology, the data rate of optical
links is in the order of 2.5-10 Gbps, while 40 Gbps links
are becoming commercially available. In order to utilize
efficiently this capacity, network operators aggregate several
lower-rate traffic streams onto each link. MPLS standards and
related technology facilitate the packaging of traffic into label-
switched paths (LSPs), and the tunneling of these LSPs from
source to destination along higher capacity links.

In a continuous-rate network, users may request any rate
of service, and the network must be designed so as to
accommodate arbitrary requests. For instance, one user may
request an LSP with bandwidth of 98.99 Mbps, while another
user may ask for 99.01 Mbps. The network provider then faces
the problem of designing mechanisms to distinguish between
these two rates and enforce them in a reliable manner, a
task that may be extremely difficult (or even impossible) for
traffic of finite duration. Given the unpredictability of future
bandwidth demands in terms of their size, arrival time, and
duration, link capacity across a continuous-rate network may
become fragmented, posing significant risks to the ability of
the network to achieve an acceptable level of utilization and
meet users’ QoS. A related challenge is that of LSP resizing,
i.e., the need to adjust the bandwidth (and possibly, the path)
of an LSP if a user exceeds the current allocation.

In practice, most network operators offer some type of tiered
service, in which users may select only from a small set of
service tiers (levels). The main motivation for offering such a
service is to simplify a wide range of core functions (includ-
ing network management and equipment configuration, traffic
engineering, service level agreements, billing, and customer
support), enabling the providers to scale their operations to

This work was supported by the NSF under grant CNS-0434975.

hundreds of thousands or millions of customers. For instance,
a tiered-service network might assign both users requesting
98.99 Mbps and 99.01 Mbps to two LSPs of the next higher
available rate, say, 100 Mbps. In this case, there is no need
to handle the two LSPs differently; furthermore, the network
operator only needs to supply policing mechanisms for a small
set of rates, independent of the number of LSPs. Currently,
service tiers are either based on the bandwidth hierarchy of
the underlying network infrastructure (e.g., DS-1, DS-3, OC-
3, etc.), or are determined in some ad-hoc manner (e.g., the
various ADSL tiers available through different providers).

In this paper, we develop a systematic framework for
selecting the service tiers optimally, eliminating the need for
guesswork and ad hoc approaches. Our work is based on the
observation that, by mapping a user to the next higher offered
service level, a tiered-service network may use more resources
that a continuous-rate one to satisfy the same set of requests for
service; alternatively, for a given amount of resources, a tiered-
service network will be able to accommodate a smaller fraction
of user requests than a continuous-rate one. Therefore, we
address the issue of optimally selecting the service levels to be
offered so as to minimize the additional amount of resources
required. We formulate the problem as a variant of the p-
median problem under a new distance metric, and we present
an efficient optimal algorithm which scales to very large
number of users. Our main finding is that a small set of optimal
service levels is sufficient to approximate the resource usage
of a continuous-rate network. In other words, the benefits of
tiered service in terms of simplified network functions can be
achieved with only a small sacrifice in network resources.

We also consider a variant of the problem in which all
service tiers are multiples of a basic bandwidth unit, and we
develop efficient algorithms to select the basic unit and service
levels that are jointly optimal. A network operating with such
a set of service levels would resemble a TDM network that
allocates bandwidth in multiples of a slot. Consequently, many
robust network management functions developed for telecom-
munication networks, including admission control, routing,
traffic grooming, etc., could be easily adapted for the tiered-
service packet-switched network. We emphasize that this
“TDM emulation” only concerns the control and management
functions, not the data plane operation of the network. For
example, while bandwidth is allocated in multiples of the basic
unit, LSPs are not limited to using a particular slot. Similarly,
unlike TDM networks where an unused slot is wasted, excess
bandwidth can be allocated to active LSPs by the scheduling
algorithm. Furthermore, the bandwidth unit is not fixed or

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1577

determined by hardware, as in a TDM network, but, it is
configurable and can be optimized for the characteristics of
the carried traffic. In addition, the routers provide for free the
functionality of a time-slot interchange. Overall, the tiered-
service network can have many of the benefits, in terms of
control and management, of a TDM network, but without the
data plane rigidities of such a network.

A restricted version of the problem we consider here was
studied in [7] in the context of reducing the number of states
for the analysis of ATM networks, and a heuristic based on
simulation annealing was used to select the service levels.
Our approach is more general, as we provide a theoretical
framework for reasoning about and tackling algorithmically
the general problem of service tier selection.

In Section II we formulate the problem of service tier
selection as a directional p-median problem, and present an
efficient optimal algorithm. In Section III we consider the
problem with the additional constraint that all service levels
be a multiple of the same bandwidth unit; we then develop
a set of algorithms to select both the service levels and the
bandwidth unit that are jointly optimal. We present numerical
results in Section IV, and we conclude the paper in Section V.

II. SERVICE TIER OPTIMIZATION

We consider a packet-switched network with n users. Let xi

be the amount of bandwidth requested by user i. The network
offers p ≥ 1 levels (tiers) of service; typically, p � n. The
j-th level of service corresponds to bandwidth zj , z1 < z2 <
. . . < zp. In such a tiered-service network, each user i is
mapped to service level zj such that zj−1 < xi ≤ zj . The ad-
ditional bandwidth zj −xi represents the performance penalty
associated with the tiered service. Given the set X = {xi}
of user requests and the number of service levels p, we are
interested in finding the set of service levels S = {z1, . . . , zp}
which minimizes the performance penalty over all n users; we
refer to such set as “optimal.” In this section, we show that
this problem is equivalent to the p-median problem under a
new distance measure, the directional rectilinear distance, and
we present an efficient optimal algorithm to solve it. In the
following, we use terminology standard in discrete location
literature, and refer to bandwidth requests as “demand points”
and to service tiers as “supply points”.

A. The Traditional p-Median Problem on the Line: PM1

The traditional p-median problem asks us to find, for a given
set of n demand points on the real line, the set of p supply
points that minimizes the total distance of each demand point
to its nearest supply point. Let d(xi, zj) be the distance from
point xi to point zj on the line, according to some distance
metric. The decision version of the p-median problem on the
line may be formally stated as:

Problem 2.1 (PM1): Given a set X = {x1, x2, . . . , xn}
of demand points, an integer p, and a bound B, does there
exist a set S = {z1, z2, . . . , zp} of p supply points such that∑n

i=1 min1≤j≤p {d(xi, zj)} ≤ B?

6

0 1

X :

S :

1
x

2
x x

3
x

4
x

5

z
2

6
x x x x x x x x

7 8 9 1310 11 12

z
1

z
3

z
4

z
5

z

Fig. 1. Sample mapping of demand points xi to supply points zj

The choice of distance measure impacts the complexity of
the problem as well as the approach needed to find a solution.
An O(np) algorithm for PM1 is given in [6], and it is known
that the p-median problem is NP-complete in two or more
dimensions under either the Euclidean or the rectilinear dis-
tance measure [8]. For a comprehensive treatment of location
problems, the reader is referred to [5].

B. The Directional p-Median Problem on the Line: DPM1

We now introduce the directional rectilinear distance mea-
sure. In general, a l-directional, k-dimensional rectilinear
metric (with l ≤ k) defines distance from point (r1, . . . , rk)
to (q1, . . . , qk) to be ∞ if ri > qi for some i ∈ {1, . . . , l} and∑

1≤i≤k |qi − ri| otherwise. Thus, in a directional p-median
problem, a supply point must achieve or exceed the values of
the first l coordinates of all the demand points assigned to it.
On the real line, this restriction requires that the nearest supply
point for a given demand point be located to the right of it,
hence, the 1-directional rectilinear distance is:

ddr(xi, zj) =
{

zj − xi, zj ≥ xi

∞, otherwise (1)

Let X = {x1, . . . , xn} be a set of n demand points on
the real line, such that x1 ≤ x2 ≤ · · · ≤ xn, and define the
density of X to be ρX =

∑n
i=1 xi. A set of supply points

S = {z1, . . . , zp}, z1 < z2 < · · · < zp, 1 ≤ p ≤ n, is a
feasible solution for X if and only if xn ≤ zp. Associated
with a feasible solution is an implied mapping X → S, where
xi → zj if and only if zj−1 < xi ≤ zj . Figure 1 shows a
sample mapping from a set of 13 demand points onto a set
of 6 supply points. Let nj be the number of demand points
mapped to supply point zj . The directional p-median problem
on the real line (which we will refer to as problem DPM1) is:

Problem 2.2 (DPM1): Given a set X of n demand points,
x1 ≤ x2 ≤ · · · ≤ xn, find a feasible set S of p supply points,
z1 < z2 < · · · < zp, 1 ≤ p ≤ n, which minimizes the
following objective function:

Obj(S) =
p∑

j=1

(njzj) − ρX = Ψ(X, p) − ρX (2)

The density ρX is the amount of load requested by the original
set of demand points, while the term Ψ(X, p) is the load
assigned to the users under the tiered service. Hence, Obj(S)
is the amount of excess bandwidth needed by the tiered-service
network to accommodate the demand set X after mapping it
to the supply set S.

The proof of the following lemma is straightforward.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1578

Lemma 2.1: Let X be a set of n demand points. There
exists an optimal set of supply points S = {z1, . . . , zp}, z1 <
z2 < · · · < zp, that minimizes the objective function (2) such
that zj ∈ X , for each j = 1, . . . , p.

Define Xk =
⋃k

i=1{xi}, k = 1, 2, . . . , n, as the set with the
k smallest demand points in X . Based on Lemma 2.1 and the
fact that for a given demand set X the density ρX is constant,
it is possible to solve DPM1 by using the following dynamic
programming algorithm to compute Ψ(X, p) recursively:

Ψ(X1, l) = x1, l = 1, . . . , p (3)

Ψ(Xk, 1) = kxk, k = 1, . . . , n (4)

Ψ(Xk, l + 1) = min
q=l,...,k−1

{Ψ(Xq, l) + (k − q)xk}
l = 1, . . . , p − 1, k = 2, . . . , n (5)

Expression (3) states that if there is only one demand point,
it is the optimal supply point. Expression (4) is due to the
fact that when p = 1, the optimal supply point is equal to
the largest demand point. The recursive expression (5) can be
explained by noting that the (l + 1)-th supply point must be
equal to the demand point xk. If the l-th supply point is equal
to xq, q = l, . . . , k − 1, the tiered-service load is given by
the expression in brackets in the right-hand side of (5), since
k − q demand points are mapped to supply point xq. Taking
the minimum over all values of q provides the optimal value.

The running time complexity of the above dynamic pro-
gramming algorithm is O(pn2). In the following, we exploit
a property of DPM1 to develop an O(pn) optimal algorithm
which scales well to large problem instances with demand sets
of size n in the order of thousands and beyond.

C. Monge Condition and Totally Monotone Matrices

We can restate DPM1 as a constrained shortest path prob-
lem. Let G = (V,E) be a weighted, complete, directed acyclic
graph (DAG), with vertex set V = {0, 1, . . . , n}. In the DAG
representation of DPM1, demand xi gives rise to vertex i, and
we create another vertex 0. Arc weight w(i, k) represents the
cost of mapping demand points xi+1,. . .,xk, to point xk:

w(i, k) =
{

0, k = i + 1
(k − i − 1)xk − ∑k−1

j=i+1 xj , k > i + 1
(6)

As an example, Figure 2 shows the graph for a DPM1 instance
with n = 5. It is not difficult to prove the following lemma:

Lemma 2.2: Solving an instance of DPM1 with n demand
points is equivalent to finding a minimum weight p-link path
from vertex 0 to vertex n in the corresponding DAG.

A weighted DAG satisfies the concave Monge condition if

w(i, j) + w(i + 1, j + 1) ≤ w(i, j + 1) + w(i + 1, j) (7)

holds for all 0 < i + 1 < j < n. By substituting (6) into (7),
it can be shown that the DAG representing any instance of
DPM1 obeys the concave Monge condition.

Consider a matrix M of real elements, and let I(t) denote
the index of the leftmost column containing the maximum
value in row t of M . Matrix M is said to be monotone if

t1 > t2 ⇒ I(t1) ≥ I(t2), ∀ t1, t2. (8)

0 1 2 3 4 5

w(1,5)

w(0,4)

w(0,3)

w(0,2)

w(0,1)=0 w(2,3)=0

w(2,4)

w(2,5)

w(3,4)=0

w(3,5)

w(1,2)=0

w(1,3)

w(1,4)

w(0,5)

Fig. 2. DAG representation of an instance of the directional p-median
problem with n = 5

Matrix M is said to be totally monotone if all its sub-matrices
are monotone [1]. It has been shown [2] that a 2-dimensional
Monge array is totally monotone.

The work in [1] presents an algorithm that can find the
minimum entry in each column of a totally monotone n × m
matrix, n ≥ m, in Θ(n) time. This elegant matrix searching
algorithm has many geometric applications, and we show in
the next subsection how it can be applied to obtain a faster
optimal algorithm for DPM1. For the details of the matrix
searching algorithm, the reader is referred to [1], [3].

D. Efficient Dynamic Programming Algorithm for DPM1

To develop a faster algorithm for DPM1, we introduce the
following dynamic programming formulation to obtain the
optimal value of the objective function Obj(S) in (2):1

F (1, l) = 0, l = 1, · · · , p (9)

F (k, 1) = w(0, k), k = 1, · · · , n (10)

F (k, l + 1) = min
q=l,...,k−1

{F (q, l) + w(q + 1, k)}
l = 1, . . . , p − 1, k = 2, . . . , n (11)

where w(i, k) are the arc weights of the DAG corresponding
to this instance of DPM1, as defined in (6). The optimal value
for the objective function Obj(S) in (2) is obtained as the
value of F (n, p). Expressions (9)-(11) correspond to (3)-(5),
respectively, and can be explained in a similar manner.

Our objective is to obtain the value of F (n, p) by computing
all the elements of each column l of the matrix defined by F in
O(n) time. Note that for l = 1, the elements of the first column
can be computed in O(n) time from expressions (10) and (6).
Therefore, we concentrate on computing expression (11) effi-
ciently. To this end, we introduce a new function Γ(q, k):

Γ(q, k) = F (q, l−1)+w(q+1, k), q, k = 1, . . . , n (12)

We can now see that filling out the l-th column defined by
matrix F , i.e., computing the n elements F (k, l + 1), k =
1, · · · , n, from expression (11) is equivalent to finding the
minimum elements in each column of the n×n matrix defined
by function Γ(q, k). Also, Γ(q, k) depends on the values of the
elements of the (l− 1)-th column of the matrix defined by F ,
which have already been calculated.

1In contrast, recall that the dynamic programming formulation (3)-(5) was
used to compute the optimal value of the term Ψ(X, p) in (2).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1579

We now show that the function Γ(q, k) obeys the concave
Monge condition. From (7) we know that

w(q +1, k)+w(q +2, k +1) ≤ w(q +1, k +1)+w(q +2, k)
(13)

If we add the term F (q, l− 1) + F (q + 1, l− 1) to both sides
of (13) and use the definition of Γ(q, k) in (12), we get:

Γ(q, k) + Γ(q + 1, k + 1) ≤ Γ(q, k + 1) + Γ(q + 1, j) (14)

Since Γ(q, k) obeys the concave Monge condition, the matrix
represented by Γ(q, k) is totally monotone [2].

Based on the above observations, in order to solve the dy-
namic programming algorithm (9)-(11) we proceed by filling
the n × p matrix defined by function F (k, l) one column at
a time. The first column (l = 1) is filled in O(n) time using
expression (10). In order to compute the n elements of the
l-th column, l = 2, . . . , p, we use expression (12) to form an
n × n totally monotone matrix containing Γ(q, k) values that
depend on the values of the (l−1)-th column of the matrix F .
The minimum elements in each column of the n × n matrix
Γ are the n elements needed to fill the l-th column of matrix
F . These elements can be obtained in O(n) time using the
algorithm in [1] we discussed in the previous section. Hence,
the time to fill all p columns of matrix F , i.e., the time to find
the optimal value for the objective function (2), is O(np).

However, there remains one important issue that we need
to address. The O(n) algorithm in [1] assumes that the totally
monotone matrix Γ is provided as input, since building this
matrix would take time O(n2). In our case, the matrix Γ is
not provided but has to be built anew for computing each
column of matrix F . Rather than actually building the matrix
in time O(n2), we now show how to evaluate the value of
each element Γ(q, k) in constant time. Whenever the algorithm
in [1] needs to use the value of some element Γ(q, k), rather
than accessing the value from memory, we compute its value
in constant time. By replacing one constant-time operation
(memory access) with another (computing the value), we
ensure that the algorithm runs in O(n) time.

From (12) we see that element Γ(q, k) depends on the values
of F (q, l − 1) and w(q + 1, k). The value of F (q, l − 1) is
already computed and hence can be accessed in constant time.
In order to evaluate w(q + 1, k) in constant time, we perform
the following preprocessing operation before starting to solve
the dynamic programming algorithm. Define, for q = 1, . . . , n,
A(q) =

∑q
i=1 xi. It takes time O(n) to compute and store the

values A(q) for all q. Once this is done, one can compute the
value of w(q, k) in constant time using the expression:

w(q, k) = −A(k) + A(q − 1) + (k − q + 1)xk, q ≤ k (15)

Hence the value of Γ(q, k) can be calculated in constant time
for any two values q and k.

III. CONSTRAINED SERVICE TIER OPTIMIZATION

In this section we consider a variant of the directional p-
median problem in which we impose the constraint that all
supply points be multiples of the same unit r. Figure 3 shows a

r
0 1

X :

S :

1
x

2
x

z
1

x
3

x
4

x
5

z
2

z z z z
3 4 5 6

6
x x x x x x x x

7 8 9 1310 11 12

Fig. 3. Sample mapping of demand points xi to supply points zj that are
multiples of a basic unit r

sample mapping from a set X of 13 demand points onto a set S
of 6 supply points, under this constraint. The set X is identical
to the one in Figure 1 which shows a sample mapping under
DPM1. The main difference is that with the new constraint,
the supply points are all multiples of the same unit r.

In the context of MPLS LSPs, parameter r represents the
unit bandwidth, i.e., the smallest quantity in which bandwidth
may be allocated. Therefore, this problem variant has impor-
tant applications to next-generation SONET networks in which
it is possible to use virtual concatenation to allocate bandwidth
flexibly in any multiple of 64 Kbps [4]. It is also applicable to
packet-switched technologies (e.g., 1 or 10 GE links) which
may benefit from TDM emulation, as we discussed earlier.

This constrained directional p-median problem, which we
will refer to as CDPM1, can be expressed as follows (recall
that nj is the number of demand points mapped to supply point
zj , ρX =

∑n
i=1 xi, and Obj(S) is the objective function (2)

of the DPM1 problem):
Problem 3.1 (CDPM1): Given a set X of n demand points,

x1 ≤ x2 ≤ · · · ≤ xn, and a constant C, find a real r and
a feasible set S of p supply points, z1 < z2 < · · · < zp,
1 ≤ p ≤ n, so as to minimize the objective function:

CObj(S) =
p∑

j=1

(njzj)−ρX +
C

r
= Obj(S) +

C

r
(16)

under the constraints: zj = rkj , kj : integer, j = 1, . . . , p.
The term Obj(S) in (16) represents the excess bandwidth

penalty, as before. However, the objective function for CDPM1
includes the additional term C

r , where C is some constant
related to the operation of the system, as we explain shortly.
The presence of a term which is a monotonically decreasing
function of r in (16) is necessary, since without it CDPM1
reduces to DPM1: if nothing prevents r from being very small,
then the optimal is obtained for r = 1 bps as the solution to
DPM1 which minimizes the excess bandwidth penalty.

More importantly, the term C
r is of practical importance

as it captures the overhead associated with making the unit
r of bandwidth allocation small. To illustrate, let us make
the simplifying assumption that all users request and receive
the basic rate of r bits/sec. After serving a user, the system
incurs some overhead due to the bookkeeping operations,
memory lookups, etc., required before it can switch to serving
another user. Let α denote the amount of time required to
switch between users, expressed as the number of bits that
could be transmitted during this time at the given service rate.
Therefore, the quantity α

r represents the amount of overhead
operations relative to the bandwidth unit. This relative over-
head, which increases as the unit of bandwidth decreases, is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1580

similar in principle to the “cell tax” incurred in carrying IP
traffic over ATM networks due to the relatively large fraction
of header (i.e., overhead) bits to data bits. In the objective
function (16) we use the term C

r where C = cα and c is a
constant which ensures that the two terms in the rightmost
side of (16) are expressed in the same units.

We note that the term Obj(S) in (16) requires that the unit
r be small so as to minimize the excess bandwidth. However,
making r small would increase the term C

r which represents
the bandwidth wasted due to overhead operations. Therefore,
the objective of CDPM1 is to determine the value of r so as
to strike a balance between these two conflicting objectives.

A. Optimal Solution to CDPM1 for Fixed r

As defined, the objective of CDPM1 is to find jointly
optimal values for the basic bandwidth unit r (a real number)
and the p supply points. However, let us consider for a moment
the special case where the value of r is fixed and not subject
to optimization; as we shall see shortly, the algorithm for
this problem is useful in tackling the general one. In this
case, the term C

r in (16) is constant and does not affect the
minimization. Hence, the objective function is identical to that
of the DPM1 problem.

Consider an instance of CDPM1 in which the value of
the basic bandwidth unit is fixed at r = r0; that is, the p
supply points can only take the values kr0, k = 1, . . . , K.
Let U = {u1, . . . , uK} be the set of candidate values for
the p supply points, uk = kr0; in Figure 3, these candidate
values are represented by the ticks below the horizontal line.
Integer K corresponds to the largest possible multiple of r0,
i.e., K = 	xn

r0

, where xn is the largest demand point.

This version of CDPM1 can be represented by a DAG
similar to the one in Figure 2. In this case, the DAG has
K +1, rather than n+1, vertices: vertex 0 and the K vertices
corresponding to the K candidate values for the supply points
(recall that in DPM1, the candidate supply points are the n
demand points). Similarly, the arc weight w(i, k) in this DAG
represents the cost of mapping the demand points with values
between candidate supply points ui and uk to uk:

w(i, k) =
∑

ui<xj≤uk

(uk − xj) (17)

It is also not difficult to verify that these weights satisfy the
concave Monge condition (7) for all 0 < i + 1 < j < K.

Since this version of CDPM1 has the same objective func-
tion as DPM1 and can be represented by a DAG whose weights
satisfy the concave Monge condition, we can solve it optimally
using the dynamic programming algorithm in Section II-D.
Note that the algorithm will run in O(pK), not O(pn), time,
as it has to consider K candidates for the p supply points.

B. The Behavior Of The CDPM1 Objective Function

To obtain insight into how the additional parameter r affects
the optimization, let us investigate the behavior of the objective
function CObj in (16) as we vary r. In Figure 4 we plot the
objective function against the value of r for an instance of

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bj

ec
tiv

e
F

un
ct

io
n

Basic unit (r)

Fig. 4. Objective function value against r, n = 1000, p = 10, C = 0.01,
demand points generated from a uniform distribution in (0, 1)

CDPM1 with n = 1000 demand points, p = 10 supply points,
and C = 0.01, with the set of n demand points generated
from a uniform distribution in (0,1). We varied the value of
the basic unit r in increments of δr = 10−5 across the range
shown in the figure. For each (fixed) value of r we obtained
the optimal supply points in the manner we described in the
previous subsection, from which we evaluated the objective
function (16), including the term C

r .
The behavior exhibited in Figure 4 is representative of the

CDPM1 instances we have studied. At low values of r, the
term C

r representing the overhead cost dominates, resulting
in large overall values. As r increases, there is an initial
period of rapid decrease in the objective function as the term
representing the excess bandwidth penalty starts to become
important. Following this initial decrease, the curve settles
into a seesaw pattern. The high and low points along this
pattern depend on the values of the multiples of r relative to
the demand points: when multiples of r are aligned close to
demand points, there is little bandwidth penalty for mapping
these demand points to supply points that are multiples or r,
hence the objective function has a lower value; the opposite
is true when there is a mismatch between multiples or r and
demand points. We also note that as the value of r increases
further, the curve trends upwards. This behavior is due to two
factors that come into play when r becomes large: the excess
bandwidth term in (16) starts to dominate, and at the same
time this term increases in value as large values of r are too
coarse to minimize the excess bandwidth.

It is clear from Figure 4 that the objective function is non-
convex and includes several troughs at irregular intervals. This
non-convex nature makes standard optimization techniques
(e.g., steepest descent methods) impractical, as it is very
easy to get trapped in a local minima. We now describe an
exhaustive search approach for identifying the value of r and
the supply points that minimize the objective function, and
in the next section we develop a suite of heuristics that trade
solution quality for running time.

We first observe that for a CDPM1 instance with p supply
points and xn the largest demand point, the largest value that

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1581

r may take under the constraint that all p supply points be
an integer multiple of r is rmax = xn

p . Hence, the optimal
value of r lies in the interval (0, rmax]. Let δr be a small
increment value, and consider the set R = {rm = mδr ≤
rmax,m = 1, 2, . . .}. For each (fixed) rm ∈ R, we use the
approach in Section III-A to obtain the optimal supply points,
and evaluate the objective function (16). The optimal solution
to the CDPM1 problem is obtained as the value of rm and the
corresponding supply points which produce the smallest value
for the objective function.

In order to determine the running time complexity of this
exhaustive search algorithm, let L = � rmax

δr
� be the size of set

R (i.e., the number of candidate values of r to be considered),
and Km = xn

rm
be the number of candidate supply points when

the value of r = rm. The dynamic programming algorithm
will be run L times, and during the m-th iteration, i.e., when
r = rm, the algorithm will take O(pKm) time. Since

L∑
m=1

pKm =
pxn

δr

L∑
m=1

1
m

=
pxn

δr
(ln L + γ) (18)

where γ = 0.577 . . ., is Euler’s constant, the complexity of
the algorithm is O(pxn

δr
ln(xn

pδr
)).

As we can see, the complexity of the exhaustive search
depends critically on the value of the increment δr which
determines the granularity of the search. With finer granularity
(i.e., smaller δr), the accuracy of the algorithm increases, but
its complexity also increases dramatically; the opposite is true
when δr becomes larger and the granularity coarser. We also
note that the time complexity is independent of the number n
of demand points, and depends only on the largest demand xn.
In the applications we consider, the input value xn is bounded
above by the bandwidth available on the highest capacity
link in the network. To get a sense of the values involved
in expression (18), consider a network with 10 Gbps links. A
reasonable value for the bandwidth increment is δr = 64 Kbps.
Assuming that the largest demand can be equal to the capacity
of a link, we have that xn

δr
≈ 106, which demonstrates that the

exhaustive search is taxing in terms of both computational and
memory requirements.

C. Optimization Heuristics

We now present a set of heuristics for the CDPM1 problem.
Each heuristic trades solution quality for speed by using its
own approach to reduce the size of the space of candidate
values for r and/or the supply points that it considers.

1) Demand Driven Heuristic (DDH): Recall that, for each
candidate value rm of r, the exhaustive search algorithm
considers all the Km = xn

rm
multiples of rm as the set of

potential supply points, where Km can be much larger than the
number n of demand points. The intuition behind this heuristic
is that the optimal supply points are more likely to be located
just above a demand point, since otherwise there would be a
larger penalty in terms of excess bandwidth. Therefore, the
heuristic only considers the n multiples of rm that are located
immediately to the right of (or coincide with) the n demand

points. In other words, the set U of candidate values for the p
supply points is U = {ui = rm × 	 xi

rm

, i = 1, . . . , n}. Since

there have to be n different candidate supply points, the range
of values for r is in the interval (0, xn

n = rmax]. Using n
instead of Km and the new value for rmax in expression (18),
we find that the running time complexity of the DDH heuristic
is O(pxn

δr
), which represents an improvement over the exhaus-

tive algorithm, especially for small values of δr which allow
for a finer granularity search.

2) Supply Driven Heuristics: Both the DDH and the ex-
haustive search algorithms apply the dynamic programming
algorithm in Section II-D for each candidate value for pa-
rameter r. The two heuristics we present in this section are
based on the assumption that the optimal supply points for
CDPM1 are likely to be close to the optimal supply points
for the corresponding unconstrained DPM1 problem with the
same demand set. Therefore, each heuristic initially runs
the dynamic programming algorithm for the corresponding
DPM1 problem, and computes the optimal set SDPM1 =
{zDPM1

1 , . . . , zDPM1
p } of supply points for that problem.

This step takes time O(pn), and this dynamic programming
algorithm is not used again by the heuristics.

The first algorithm, which we call the unidirectional supply
driven heuristic (USDH), sets the i-th supply point for a given
candidate value rm of r to the smallest multiple of rm that
is greater than or equal to supply point zDPM1

i . In other
words, the set Sm of supply points for candidate rm is defined
as Sm = {	 zDP M1

i

rm

rm, i = 1, . . . , p}. The heuristic returns

the value rm and corresponding set Sm which result in the
minimum value for the objective function (16).

The second algorithm is called the bidirectional supply
driven heuristic (BSDH), and computes a set of 2p possible
values for the supply points for each candidate value rm. The
first set of p values is identical to the set Sm used by the
USDH algorithm above. In addition, this heuristic considers
the set S′

m consisting of the p largest multiples of rm that
are less than the corresponding supply points zDPM1

i , i.e.,

Sm = {� zDP M1
i

rm
�rm, i = 1, . . . , p}. The 2p elements of these

two sets collectively become the candidates for being one of
the p supply points when the value of r = rm. We use the
dynamic programming algorithm in Section III-A to select the
optimal set of p supply points from the set Sm

⋃
S′

m; it is
easy to see that the dynamic programming algorithm works
even when the set of the candidate supply points is a proper
subset of the set of all integer multiples of rm. As with USDH,
the heuristic returns the value rm and corresponding p supply
points that minimize (16).

We expect the BSDH heuristic to perform better than USDH
since it considers a larger number of candidate supply points;
this improved performance, however, is at the expense of
having to run the dynamic programming algorithm on a set
of 2p points, which takes time O(p2).

3) The Power of Two Heuristic (PTH): This heuristic
simply selects the set of p supply points as the set of the
p consecutive powers of two such that the largest element

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1582

TABLE I

FORMULAE FOR THE PDF AND CDF OF THE INPUT DISTRIBUTIONS

Distribution pdf cdf Domain
Uniform 1 x 0 ≤ x ≤ 1
Increasing 2x x2 0 ≤ x ≤ 1
Decreasing −2x + 2 −x2 + 2x 0 ≤ x ≤ 1
Triangle 4x 2x2 0 ≤ x < 0.5

−4x + 4 −2x2 + 4x − 1 0.5 ≤ x ≤ 1
4/9 4x/9 0 ≤ x < 0.25

Unimodal 6 6x − 25/18 0.25 ≤ x < 0.35
4/9 4x/9 + 5/9 0.35 ≤ x ≤ 1
1/4 x/4 0 ≤ x < 0.25
4 4x − 15/16 0.25 ≤ x < 0.35

Bimodal 1/4 x/4 + 3/8 0.35 ≤ x < 0.65
1 4x − 33/16 0.65 ≤ x < 0.75

1/4 x/4 + 3/4 0.75 ≤ x ≤ 1

in the set is the smallest power of two that is larger than
or equal to the largest demand point xn; in other words,
S = {2q+1, 2q+2, . . . , 2q+p | 2q+p−1 < xn ≤ 2q+p}. This
solution is consistent with CDPM1 in that it consists of supply
points all of which are a multiple of a basic unit, in this case
2q+1. However, as we shall see shortly, the excess bandwidth
penalty for this solution can be quite high compared to the
other algorithms. We consider this solution here as a baseline
case as it is similar in spirit to approaches that assign packet
flows in classes (e.g., as in [9]) whose boundaries are defined
by powers of two.

IV. NUMERICAL RESULTS

We now present simulation results to investigate the relative
performance of the various algorithms we presented and to
determine their effect on the operation of a network. The
demand sets X of the problem instances we consider through-
out this section were generated from one of six distributions
whose pdf and cdf are listed in Table IV. Note that in general,
bandwidth demands will be in the range (0, B], where B is
the link capacity. However, in order to obtain results that are
independent of the link capacity, we assume that all demands
are normalized with respect to B; thus, the domain of the
pdf and cdf of all distributions in Table IV is [0,1]. Also,
based on our discussion in Section III-B and the fact that the
largest demand point xn ≤ 1, we used an increment value
δr = 10−5 whenever applicable. Due to space constraints, we
present only a small set of results here; please refer to [3] for
a comprehensive performance study.

Algorithm comparison. Let us first investigate the relative
performance of the various algorithms for CDPM1 with re-
spect to the objective function (16). Figure 5 plots the value
of the objective function against the value of r for the stated
problem instance, and for four CDPM1 algorithms: DDH,
BSDH, USDH, and PTH. We also show the optimal value
for the corresponding DPM1 problem; this value does not
include the overhead term C

r of (16), hence it serves as a
lower bound for the CDPM1 algorithms. Note that the DPM1
and PTH solutions do not take parameter r into account,
hence they are shown as horizontal lines in the figure. We
see that PTH performs much worse than all other algorithms,
confirming our earlier observation that using powers of two

to define classes of traffic is not an efficient approach; this
result is representative of the behavior of PTH, hence, we do
not consider this heuristic in the remainder of this section.
We also observe that the three algorithms DDH, BSDH, and
USDH perform close to the lower bound.

For the results shown in Figures 6 and 7, we have considered
thirty problem instances with n = 100, p = 5, and C =
0.05, generated from the increasing and triangle distributions,
respectively. The figures plot the objective function value
returned by each of four algorithms, DDH, BSDH, USDH,
and DPM1, for each problem instance; again, the DPM1
solution provides a lower bound for the other three algorithms.
The graphs show that, except for a few instances, all three
CDPM1 algorithms are close to the lower bound. Of the
three algorithms, DDH produces the lowest objective function
values, followed closely by BSDH. The objective function
values returned by USDH are generally higher than those
of the DDH and BSDH heuristics, but USDH has a much
faster running time. Hence, these results indicate that there
is a tradeoff between quality of solution and running time
complexity of the algorithms.

Bandwidth penalty due to tiered service. Let us now turn
our attention to determining the penalty in terms of excess
resources needed due to tiered service. Given a demand set
X , a continuous-rate link will use an amount of bandwidth
equal to ρX =

∑
i xi to satisfy all the demands in X . A link

of a tiered-service network, on the other hand, will in general
use more bandwidth, as each demand xi will be mapped
to the next offered level of service (i.e., supply point). For
a network with service levels obtained through the DPM1
(respectively, CDPM1) algorithm, the amount of bandwidth
used is given by the objective function (2) (respectively, the
objective function (16) after subtracting the term C

r . In our
study, we use the normalized bandwidth requirement metric,
defined as the ratio of the amount of bandwidth used by a
tiered-service network to the amount of bandwidth ρX used
by a continuous network, to characterize the bandwidth penalty
incurred by a tiered-service network.

Figures 8 and 9 plot this metric against the number p of ser-
vice levels offered by the network. Each point in these curves
is the average over 30 different problem instances generated
by a uniform distribution; similar results were obtained for all
other distributions shown in Table IV and can be found in [3].

Figure 8 presents results for two tiered service scenarios:
one in which the service levels are obtained from the DPM1
algorithm, and one in which they are obtained from the
DDH algorithm; DDH is selected as a representative algorithm
for the CDPM1 problem in which the service levels are
all multiples of a basic bandwidth unit r. As we can see,
the curve for DDH is above the one for DPM1 This result
is expected, since the (optimal) DPM1 algorithm is only
concerned with minimizing the excess bandwidth due to tiered
service, while the DDH algorithm also has to take into account
the constraint that all service levels be multiples of a basic unit.
However, the additional penalty due to the constraint imposed
by the CDPM1 problem is relatively small; we have observed

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1583

 40

 60

 80

 100

 120

 140

 160

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

O
bj

ec
tiv

e
F

un
ct

io
n

Basic unit (r)

PTH
USDH
BSDH

DDH
DPM1

Fig. 5. Objective function value against r, n = 1000, p = 15, C = 0.05,
triangle distribution

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30

O
bj

ec
tiv

e
F

un
ct

io
n

Instance Number

USDH
BSDH

DDH
DPM1

Fig. 6. Objective function value returned by the algorithms, n = 100, p = 5,
C = 0.05, increasing distribution

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

O
bj

ec
tiv

e
F

un
ct

io
n

Instance Number

USDH
BSDH

DDH
DPM1

Fig. 7. Objective function value returned by the algorithms, n = 100, p = 5,
C = 0.05, triangle distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 5 10 15 20 25 30

N
or

m
al

iz
ed

 B
an

dw
id

th
 R

eq
ui

re
m

en
t

Service Levels (p)

DDH
DPM1

Fig. 8. Normalized bandwidth requirement against p, uniform distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20 25 30

N
or

m
al

iz
ed

 B
an

dw
id

th
 R

eq
ui

re
m

en
t

Service Levels (p)

DDH, n=10000
DDH, n=1000
DDH, n=100

Fig. 9. Normalized bandwidth requirement against p, uniform distribution

similar behavior for all distributions. Also, the normalized
bandwidth requirement decreases rapidly with the number of
service levels; this result can be explained by noting that as
the number of levels becomes very large, the tiered-service
network reduces to a continuous-rate network.

Figure 9 shows the effect of the number n of demands on
the normalized bandwidth requirement for the DDH algorithm;
the effect on the DPM1 algorithm is similar. We observe
that as the number n of demands increases, the normalized
bandwidth requirement does increase slightly, but the effect
diminishes quickly; in fact, the curve for n = 10, 000 almost
coincides with the curve for n = 1, 000 in the figure. The
conclusions we can draw from these figures, and similar ones
which can be found in [3], is that (1) with p = 10−15 levels,
the bandwidth required by a tiered-service network is only
about 5-10% higher than that of a continuous-rate network; (2)
the additional constraint that all service levels be a multiple
of a basic unit only slightly adds to the bandwidth penalty;
and (3) increasing the number n of demands imposes only an
incremental penalty on bandwidth.

Impact on network performance. Finally, let us examine
the practical impact of tiered service on overall network
performance. To this end, we consider a scenario in which
LSPs arrive and depart dynamically. An LSP between source-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1584

destination pair (s, d) requires a certain amount of bandwidth;
if a path between s and d with sufficient resources can
be found, the LSP is established, otherwise, it is rejected
(blocked). The performance measure of interest in this context
is the LSP blocking probability. We use simulation to compare
the blocking probability of a continuous network to that of
a tiered-service network. In a continuous network, an LSP
requiring bandwidth xi is accepted if a path with at least that
much bandwidth can be found. In a tiered-service network,
the bandwidth demand xi is first mapped to the next highest
service level offered, say, zj , and the LSP is accepted if a path
with bandwidth at least equal to zj is found. The service levels
for the tiered-service network are computed in advance for
the given demand distribution, using the appropriate algorithm
(DPM1 or a CDPM1 heuristic).

In our simulation model, LSP requests arrive as a Poisson
process with rate λ, and the mean LSP holding time is an
exponentially distributed random variable with rate µ = 1.
Each simulation run lasts until 100,000 LSP requests have
been served. Each point in the blocking probability curves
shown here is the average of thirty simulation runs; we also
plot 95% confidence intervals which we estimated using the
method of batch means. All the results are for the NSFNet
network topology, which can be found in [3]. The capacity of
all links is set to two units of bandwidth; since the demand
distributions in Table IV are defined in the interval [0, 1], this
assumption implies that the bandwidth requested by any LSP
is at most one half the link capacity.

Figure 10 plots the blocking probability against the LSP
arrival rate for a continuous network and two tiered-service
networks, one using DPM1 to obtain the service levels and one
using DDH, a representative algorithm for the CDPM1 prob-
lem. As expected, the blocking probability of the continuous-
rate network is lowest, that of the tiered-service network
allocating bandwidth in multiples of a basic unit is highest
(DDH algorithm), and that of a network (DPM1 algorithm)
which minimizes the excess bandwidth is in between the other
two. The higher blocking probability experienced by a tiered-
service network is a direct result of the additional resources
that such a network uses for each traffic demand. However,
the increase in blocking probability is rather small and it may
be more than compensated by the advantages of tiered service.

Figure 11 shows the behavior of the blocking probability for
the DDH algorithm as we vary the number of service levels
p. The curves confirm the intuition that as p increases, the
blocking probability of the tiered-service network decreases
and tends towards that of a continuous-rate network. This
figure suggests that the network designer/engineer may select
the number p of the service levels to be offered so as to
combine the advantages of tiered service with the performance
of a continuous-rate one.

V. CONCLUDING REMARKS

Tiered service has many potential applications in network-
ing, especially in contexts where catering to very large sets
of heterogeneous users/demands poses significant scalability

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Arrival Rate

DDH
DPM1

Continuous-rate

Fig. 10. Blocking probability against the arrival rate, n = 100, 000, p = 30,
C = 0.05, uniform distribution

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Arrival Rate

DDH, p=10
DDH, p=15
DDH, p=20
DDH, p=25
DDH, p=30

Continuous-rate

Fig. 11. Blocking probability against the arrival rate, n = 100, 000, C =
0.05, uniform distribution

problems. We have developed a theoretical framework for
reasoning about service level selection. Our ongoing research
aims to extend this work by (1) quantifying the benefits of
tiered service, and (2) including pricing considerations in
service level selection.

REFERENCES

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, R. Wilber. Geometric appli-
cations of a matrix searching algorithm. Algorithmica, 2:195-208, 1987.

[2] A. Aggarwal and J. Park. Notes on searching in multidimensional
monotone arrays. In IEEE FOCS, pages 497–512, 1988.

[3] Nikhil Baradwaj. Traffic quantization and its application to QoS routing.
Master’s thesis, NCSU, Raleigh, NC, August 2005.

[4] D. Cavendish, K. Murakarni, S-H. Yun, O. Matsuda, and M. Nishihara.
New transport services for next-generation SONET/SDH systems. IEEE
Communications Magazine, 40(5):80–87, May 2002.

[5] M. Daskin. Network and Discrete Location: Models, Algorithms, and
Applications. John Wiley and Sons, New York, 1995.

[6] R. Hassin and A. Tamir. Improved complexity bounds for location
problems on the real line. Operations Res. Letters, 10:395–402, 1991.

[7] C-T. Lea, A. Alyatama. Bandwidth quantization and states reduction in
the broadband ISDN. IEEE/ACM Tran. Network., 3:352-360, June 1995.

[8] N. Megiddo and K. J. Supowit. On the complexity of some common
geometric location problems. SIAM J. Computing, 13:182-196, Feb. 1984.

[9] S. Ramabhadran and J. Pasquale. Stratified round robin: A low com-
plexity packet scheduler with bandwidth fairness and bounded delay. In
Proceedings of ACM SIGCOMM ’03, pages 239–249, August 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1585

