NC STATE UNIVERSITY

Power Aware and Computationally Efficient
Optical Network Design

George N. Rouskas

Department of Computer Science

North Carolina State University

Joint work with: Dr. Emre Yetginer (Tubitak, Turkey), Zeyu Liu (NCSU)

IEEE DLT, May 2011 — p.



NC STATE UNIVERSITY

Outline

® Power-Aware Traffic Grooming
» Power Consumption in Networks: Trends and Challenges
» Optical Networks to the Rescue: Power-Aware Traffic Grooming
# Results and Discussion

$» Computationally Scalable Optical Network Design
# Routing and Wavelength Assignment (RWA)
#» New Computationally Efficient ILP Formulations for Ring and Mesh
o Numerical Results

® Conclusions and Future Research Directions
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The Challenge of Power Consumption

® Power consumption a growing challenge for ICT industry:
# high operating costs
# high capital costs — cooling equipment

$» Significant environmental impact
® industry responsible for ~2-3% of man-made CO,
& growing at double-digit rates
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Why Energy Efficiency For Networks
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Why Energy Efficiency For Networks

Other
8%

Compute
44%,

N\ Cooling
A\ 33%

Network

15%

® So far, energy efficiency focus has been on servers and cooling

® Networks are shared resources — always on

9

In the US: 6 TWatts of power on networks
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Addressing the Challenge

® Energy-efficient designs:

1. low-power techniques in design of components
& support low-power states in processors, memory, disks
# disable clock signal to unused parts of processor
# replace complex uniprocessors with multiple simple cores

2. power management techniques across systems
# Intelligent policies to exploit low-power states
» workload management
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Addressing the Challenge

® Energy-efficient designs:

1. low-power techniques in design of components
& support low-power states in processors, memory, disks
# disable clock signal to unused parts of processor
# replace complex uniprocessors with multiple simple cores

2. power management techniques across systems
# Intelligent policies to exploit low-power states
» workload management

® Seek inexpensive energy sources

— build data/compute centers wherever energy is cheap
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The Networking Infrastructure

$® [orwarding table lookup — routers operate at very high speeds
# high energy consumption
# low-power operation not feasible
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The Networking Infrastructure

$® [orwarding table lookup — routers operate at very high speeds
# high energy consumption
# low-power operation not feasible

$» New routing architecture?
& partition Internet address space
o multiple parallel networks of “virtual” routers

# each network handles small address space — energy-efficient
routers
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Trends: Traffic vs. Router Capacity Growth
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Trends: Router Power Consumption
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Trends: Energy Demand Will Exceed Supply
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Trends: Energy Demand Will Exceed Supply
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If 33% of the world’s population were to obtain broadband access:
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Optical Networks to the Rescue

® Optical networks:

# energy efficient
& many passive components
& active components (e.g., repeaters) can be solar/wind-powered

# low carbon footprint

IEEE DLT, May 2011 — p.1
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Motivation: Router Power Consumption

Juniper Core Router T640
® 8 ports at 40 Gbps each

$» Power consumption:
#® 4500 W overall, 550 W/port

® Cost (10c/kWh):
# 3$4000/year, $500/port/year
$ Add AC+UPS:

# =~ double power consumption —
$1000/port/year

® Power consumption increases with line rate

IEEE DLT, May 2011 — p.1
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Motivation: Optical Switch Power Consumption

Calient DiamondWave PXC 128
® 128x%x128 switch

» Power Consumption:
& < 750 W overall
& < 6 W/port
# Independent of line rate
® PXC consumes ~ 1% of power

per port consumed by the Juniper
router
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The Case for Optical Bypass
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The Case for Optical Bypass
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Grooming Networks

Electronic Layer
Virtual Topology
Capacity Constraint

DXC/
Router

=z Optical Layer
Physical Topology
Wavelength Constraint

— Optical Fiber Data Flow From Node1 to Node 6
- — - Data Flow From Node3 to Node 6

$» What is traffic grooming?

Efficiently set up lightpaths and groom (i.e., pack/unpack,
switch, route, etc.) low-speed traffic onto high capacity
wavelengths so as to minimize network resources

IEEE DLT, May 2011 — p.1.
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Traffic Grooming as Optimization Problem

$® |[nputs to the problem:

# physical network topology (fiber layout)

o traffic matrix 7" = |ty — int multiples of unit rate (e.g., OC-3)
$ Output:

# logical topology

# lightpath routing and wavelength assignment (RWA)

# traffic grooming on lightpaths

IEEE DLT, May 2011 — p.1!
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Traffic Grooming Subproblems
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® |ogical topology design — determine the lightpaths to be established

IEEE DLT, May 2011 — p.1



NC STATE UNIVERSITY
Traffic Grooming Subproblems

® | ogical topology design — determine the lightpaths to be established
® Lightpath routing — route the lightpaths over the physical topology

IEEE DLT, May 2011 — p.1



NC STATE UNIVERSITY
Traffic Grooming Subproblems

® | ogical topology design — determine the lightpaths to be established
® Lightpath routing — route the lightpaths over the physical topology

®» \Wavelength assignment — assign wavelengths to lightpaths w/o clash
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Traffic Grooming Subproblems

o o 0o 0

Logical topology design — determine the lightpaths to be established
Lightpath routing — route the lightpaths over the physical topology
Wavelength assignment — assign wavelengths to lightpaths w/o clash

Traffic grooming — route traffic on virtual topology

IEEE DLT, May 2011 — p.1
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Grooming Objectives

$» Minimize the number of lightpaths — minL
# equivalent to minimizing the number of electronic ports

# minimizes initial deployment cost
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Grooming Objectives

$» Minimize the number of lightpaths — minL
& equivalent to minimizing the number of electronic ports
# minimizes initial deployment cost
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& minimizes average processing delay

# minimizes electronic switching capacity
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Grooming Objectives

$» Minimize the number of lightpaths — minL
& equivalent to minimizing the number of electronic ports
# minimizes initial deployment cost

$» Minimize the amount of electronically switched traffic — minT
& minimizes average processing delay

# minimizes electronic switching capacity

$» Minimize the amount of power consumption — minP
# maximizes power efficiency (in Watts/bit)
# minimizes operational costs
# most general objective
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Power Consumption: Assumptions

® Optical power << Electronic power
— energy consumed by optical ports is negligible

°

Inactive ports and transceivers may be shut down

°

Power consumption of each component (electronic input/output port,
O/E and E/O converters) increases linearly with amount of traffic
handled

IEEE DLT, May 2011 — p.1:
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Power Consumption: Router Port Model
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Power Consumption: Router Port Model
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Equivalent to minimizing amount of electronically switched traffic — minT
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Power Consumption: Router Port Model

! 0
p:
Pmax

o

- P=P, +pt
- Y
2
(@
Po -

PO =0
traffic rate, t C g

Most general model: minimize power consumption — minP
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ILP Formulation

® Objective:
1. minL: min # of lightpaths
2. minT: min amount of electronically switched traffic

3. minP: min power consumption — most general model

$® subject to:
# lightpath routing constraints
# wavelength assignment constraints
# traffic routing constraints

IEEE DLT, May 2011 — p.2
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Performance Evaluation

W = 3 wavelengths

(' = 48 wavelength capacity

Source-destination traffic t,q «— uniform/|0, t,,qz
Py =0.25

Porue =1

Each data point: average of 40 problem instances

© o o o 0 0
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Results: Number of Lightpaths

# lightpaths

max
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Results: Amount of Electronically Switched Traffic
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Results: Relative Power Consumption
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Summary and Discussion

® Power-aware design may lead to significant energy savings even for
small networks

The benefits are expected to increase with the network size

| I

Challenges:
# existing ILPs do not scale to realistic networks

» performance of heuristics difficult to characterize

IEEE DLT, May 2011 — p.2!
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Routing and Wavelength Assignment (RWA)

$® Fundamental control problem in optical networks

® Objective: for each connection request determine a lightpath, i.e.,
& a path through the network, and
# a wavelength

$» Two variants:
1. online RWA: connection requests arrive/depart dynamically

2. static RWA: a set of traffic demands to be established
simultaneously

IEEE DLT, May 2011 — p.2
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Static RWA

$ Input:
» network topology graph G = (V, E)
s traffic demand matrix T = [t 4]

® Objective:
o mMIiNRWA: establish all demands with the minimum # of As
# maxRWA: maximize established demands for a given # of As

®» Constraints:
# wavelength continuity: each lightpath uses the same A along path
# distinct wavelength: lightpaths using the same link assigned
distinct As

® NP-hard problem (both variants)

IEEE DLT, May 2011 — p.2
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RWA Example
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RWA: Symmetry
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Link ILP Formulation

® Nodes/links are entities of interest

® Focus on traffic demand to and from nodes, on links

-
-

\ cW=0,1 ‘
ij '

\
' fO ( )I
} link |

$ Bridging variable: demand between nodes on links
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Path ILP Formulation

°

Nodes/paths are entities of interest

°

Demand is still between nodes

e

For each given demand node pair, list all paths
— typically, a subset of all paths

— -
——— —_~~
- —

o

assign variable to path traffic flow — implicitly identifies demand

°

for each link, sum up path flow variables
— constrain with capacities

IEEE DLT, May 2011 — p.3
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RWA As Graph Coloring
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Maximal Independent Sets

® |[ndependent set: a set of vertices in a graph no two of which are
adjacent

$» Maximal independent set. not a subset of any other independent set

xxxgg
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MIS ILP Formulation

°

Precompute k paths for each source-destination pair

°

Create the path graph G :
#® eachnodein Gp corresponds to a path in the original network
# two nodes connected in Gp if corresponding paths share a link

°

Enumerate the MISs of G,

o

Set up ILP to assign wavelengths to each MIS

IEEE DLT, May 2011 — p.3
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Comparison

$® Link ILP formulation
o O(N*W) variables
s O(N?*W) constraints
# symmetry with respect to A permutations

$® Path ILP formulation

o O(N?W) variables

s O(N?*W) constraints

® symmetry with respect to A\ permutations
$ MIS ILP formulation

s O(3V"/3) variables

o O(N?) constraints

$ Nno symmetry

o size independent of W — future-proof

IEEE DLT, May 2011 — p.3!
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RWA in Ring Networks

°

Vast parts of network infrastructure based on SONET/SDH rings

°

AT&T operates =~ 6,700 rings in North America

— optimal solutions for rings important for foreseeable future

Max size of SONET ring: 16 nodes

| I

Operators have started transition to mesh networks — next ...

IEEE DLT, May 2011 — p.3
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Running Time Results, W/ = 120
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Running Time Results, W/ = 120
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Running Time Results, W/ = 120
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MIS Decomposition for Rings: MISD-2

N

® Clockwise paths do not intersect with counter-clockwise paths:
L Ccw ccw
G, = G UGS
& M, M M :#of MISs of G, G, G
MC’LU — MCC’UJ — /M

— orders of magnitude decrease in # of variables/size of formulation

® Slight modifications to formulation

IEEE DLT, May 2011 — p.3:
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Further Decomposition: MISD-4

® Consider clockwise direction only
— similar steps for counter-clockwise

$ Partition ring in two parts such that:

cw __ cw,0 cw,1 cw,core
Gyt = Gt UG UG,

7
N\

>

IEEE DLT, May 2011 — p.3!
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MISD-4 (cont’d)

® Express each MIS m of G as:
m = m’Um'U q

$® Modify the formulation appropriately
o # MIS variables |
o # constraints |

® Recursively partition the two ring parts to effect higher-order
decompositions (MISD-8, MISD-16, . . .)

IEEE DLT, May 2011 — p.4
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Results: # of MIS Variables
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Running Time Results, W = 120

sol time (s)

Mem

tLim

7200 F—

1000

100F

00LE

<0.001

—o— link |3
—®— path |]
—¥— MIS |
I I

20 22 24

IEEE DLT, May 2011 — p.4



NC STATE UNIVERSITY

Running Time Results, W = 120
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Running Time Results, W = 120
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Running Time Results, W = 120
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RWA In Mesh Networks

$» MIS decomposition does not work
® Devised new exact decompositions for path formulation

® May solve efficiently 40-node networks

IEEE DLT, May 2011 — p.4
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Running Time Results: Torus
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Running Time Results: Torus
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Running Time Results: Asymmetric Topologies
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Running Time Results: Asymmetric Topologies
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Conclusion & Ongoing Research

Traffic grooming is ideal candidate for encompassing energy concerns
Power-aware network design may lead to significant energy savings

RWA subproblem can be solved efficiently

o o 0o 0

Current research focuses on:
# more accurate power consumption models for traffic grooming

» computationally efficient formulations for optical network design
problems
& traffic grooming
& Impairment-aware RWA
& multicast RWA and grooming
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