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Optical Network Design

Optical networks: the foundation of the global network infrastucture

Network design and planning crucial to operation of the Internet:

QoS, support of critical applications

survivability to failures

economics

· · ·
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Challenges

Network design problems are hard

Optimal solutions do not scale with

network size

number of wavelengths (≈ 100/fiber currently)
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Challenges

Network design problems are hard

Optimal solutions do not scale with

network size

number of wavelengths (≈ 100/fiber currently)

“What-if” analysis: substantial investments to explore sensitivity to:

forecast traffic demands

capital/operational cost assumptions

service price structures

· · ·
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Traffic Grooming: Airline Analogy
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Traffic Grooming as Optimization Problem

Inputs to the problem:

physical network topology (fiber layout)

number of wavelengths W and their capacity C

traffic matrix T = [tsd] → int multiples of unit rate (e.g., OC-3)

Output:

logical topology

traffic grooming on lightpaths

lightpath routing and wavelength assignment (RWA)

Objective:

minimize the number of lightpaths so as to carry the traffic
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Traffic Grooming Subproblems

1

2

3

4

5

6

ACP 2012 – November 10, 2012 – p.7



Traffic Grooming Subproblems

1

2

3

4

5

6

Logical topology design → determine the lightpaths to be established

ACP 2012 – November 10, 2012 – p.7



Traffic Grooming Subproblems

1

2

3

4

5

6

Logical topology design → determine the lightpaths to be established

Traffic routing → route traffic on virtual topology

ACP 2012 – November 10, 2012 – p.7



Traffic Grooming Subproblems

1

2

3

4

5

6

Logical topology design → determine the lightpaths to be established

Traffic routing → route traffic on virtual topology

Lightpath routing → route the lightpaths over the physical topology

ACP 2012 – November 10, 2012 – p.7



Traffic Grooming Subproblems
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Logical topology design → determine the lightpaths to be established

Traffic routing → route traffic on virtual topology

Lightpath routing → route the lightpaths over the physical topology

Wavelength assignment → assign wavelengths to lightpaths w/o clash
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Airline Analogy (2)

Lightpaths, logical topology ↔ Flights, flight routes

Traffic routing ↔ Travel itinerary

Electronic ports ↔ Gates

Grooming switch ↔ Hub airport

Wavelengths ↔ Gate timeslots
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Traffic Grooming Complexity

. . . . . .S 1 2 3 n n+1 n+2 n+3 n+4 2n+1 D

Problem instance:

unidirectional linear (path) network

logical topology and RWA is given

traffic either bifurcated or not bifurcated

Objective: find a routing of traffic onto the lightpaths

Result: problem is NP-complete → reduction from Subset Sums
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Challenge: Running Time
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Challenge: Wavelength Fragmentation
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Routing and Wavelength Assignment (RWA)

Fundamental control problem in optical networks

Objective: for each connection request determine a lightpath, i.e.,

a path through the network, and

a wavelength

Two variants:

1. online: lightpath requests arrive/depart dynamically

2. offline: set of lightpaths to be established simultaneously
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Offline RWA

Input:

network topology graph G = (V,E)

traffic demand matrix T = [tsd]

Objective:

establish all lightpaths with the minimum # of λs

maximize established lightpaths for a given # of λs

Constraints:

each lightpath uses the same λ along path

lightpaths on same link assigned distinct λs

NP-hard problem (both objectives)
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RWA Example
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RWA: Symmetry
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Ring RWA: Running Time
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Ring RWA: Running Time
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Mesh RWA

Path formulation:

compact formulation for optimal symmetric solutions

fast, close to overall optimal
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Symmetric Solution: Running Time
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Symmetric Solution: Quality
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Traffic Grooming: Integrate MISD
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Traffic Grooming Decomposition

Decompose and solve the two problems sequentially:

1. Logical topology and traffic routing

2. Routing and wavelength assignment
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Traffic Grooming Decomposition

Decompose and solve the two problems sequentially:

1. Logical topology and traffic routing
→ determine lightpaths
→≤ objective value of integrated problem

2. Routing and wavelength assignment
route and color lightpaths from Step 1
fast (for rings and medium mesh networks)

Optimal for instances that
are not λ-limited
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Logical Topology and Traffic Routing Problem

i j
b   integer

ij

Independent of physical topology

Integer variables are not binary
→ LP relaxation possible
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Iterative Algorithm

1. thresh ← 0

2. Relax integrality constraints on lightpath variables s.t.:
bij − ⌊bij⌋ > thresh

3. Solve relaxed problem

4. If all variables integer, stop

5. If thresh > .8, stop

6. thresh + = 1/C

7. Repeat from Step 2
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Iterative Algorithm: Quality
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Iterative Algorithm: Running Time
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Conclusion & Ongoing Research

First steps towards efficient network design

scalable techniques on commodity hardware

lower the barrier to entry

focus on exploring design options, not ILP details
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Conclusion & Ongoing Research

First steps towards efficient network design

scalable techniques on commodity hardware

lower the barrier to entry

focus on exploring design options, not ILP details

Many open problems:

impairment-aware RWA

shared protection, survivable grooming

routing and spectrum allocation in elastic optical networks
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